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So far in our chosen text, we have seen that all �nite hypothesis classes are PAC-learnable, and

that the trivial hypothesis class is not PAC-learnable. Firstly, Chapter 6 highlights that �niteness

of the hypothesis class is not a necessary condition for PAC-learnability, so the cardinality of the

hypothesis class is not an e�ective measure of the sample complexity function. The objective of

Chapter 6 is to �nd middle ground and ascertain exactly what makes a hypothesis class (agnostic)

PAC-learnable. While this is primarily of theoretical interest, there are other motivations: the

discretisation trick may produce a gross over-estimate of the required number of samples to

train, and provides little in the way of helping choose one hypothesis class over another. The

characterisation to be discussed is equivalent to PAC-learnability, and provides an excellent

description for the size of an hypothesis class. The idea was �rst introduced by Vapnik and

Chervonenkis, and stems from the well-studied theory of uniform approximation of empirical

distributions (the connection between this area and machine learning has already been previously

discussed and utilised). Indeed, the idea of the VC dimension reportedly led to the development

of support vector machines, which are widely utilised even today.

Fortunately, I am quite familiar with the concept of the VC dimension (that I'm speaking today

is not a coincidence...), as it arises a lot in my area of expertise as well: the development of

concentration inequalities for uniform convergence of measure. We saw in Chapter 4 that this

is intimately connected with machine learning. Recall that

De�nition (Uniform Convergence). A hypothesis class H has the uniform convergence

property if for every ε, δ > 0, and every probability distribution D on the sample data, there is

an integer mH (ε, δ) such that if S is a sample of size m ≥ mH (ε, δ) or greater (with iid samples

according to D), then

P
(
sup
h∈H
|LS (h)− ELS (h)| > ε

)
< δ,

recalling that ELS (h) = LD (h).

In a very quick proof, it was shown that

uniform convergence property =⇒ agnostic PAC learnable
1
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In the previous chapter, we found that if our hypothesis class H is too rich, the estimation

error will not decrease in the number of samples. The VC dimension provides a measure of the

complexity of H, and how close it can get to describing a pathological distribution. It is the

opposite of the idea of �density of functions� in analysis (e.g. Stone-Weierstrass Theorem). And

much like the Stone-Weierstrass Theorem in analysis, the de�nition of VC dimension relies on

a �separation of points� concept.

De�nition. A class H shatters the set C if for any subset C ′ ⊂ C, there is a function h ∈ H

such that h (c) = 1 for c ∈ C ′ and h (c) = 0 for c /∈ C ′. The VC-dimension of H is the size of

the largest set C which can be shattered by H.

To show that the VC dimension of H is d, you need to show that

(1) There is a set of size d that can be shattered by H

(2) No set of size d+1 can be shattered by H, that is, there is some colouring of the points

in C that H cannot possibly assign.

Example (Halfplanes). Consider a plane in d-dimensional space. The case d = 1 has VC

dimension V (H) = 2 for the same reasons as the interval case in the book (in fact, the VC

dimension of balls corresponds exactly to the VC dimension of halfplanes!). The following

image shows that if d = 2, then the VC-dimension of the set of halfplanes is V (H) ≥ 3.

However, no set of four points is shattered by the set of halfplanes: choosing any three of the

points, you can colour them in such a way that by constructing any line passing between them

(according to the above picture), the remaining point will lie on the side of the pair of coloured

points. The remaining point need now only be coloured in the opposing colour. Thus, V (H) = 3.

Indeed, the VC dimension of the space of d-dimensional halfplanes is d+1. To see this, observe

that the plane forming the boundary of the halfplane can be represented as a linear function (or
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classi�er...)

f (x1, . . . , xd) = β0 +
d∑

i=1

βixi,

which has d+ 1 free parameters and can �t exactly to k ≤ d points. Taking C ′ ( C ⊂ Rd with

|C| = d+ 1, you can �t a plane to match every point in C ′ and then perturb slightly to obtain

a plane separating points in C ′ from those in C\C ′. In this way, the VC dimension can be seen

as a similar idea to the �degrees of freedom� in statistics, however, the number of parameters

does not imply the VC dimension in general.

Other examples include:

• The class of axis-aligned rectangles in d dimensions has VC-dimension 2d.

• The class of rectangles in d dimensions has in�nite VC dimension.

• The class of closed balls (or spheres) in d dimensions has VC dimension d+ 1.

• A �nite class of functions H has VC dimension bounded above by log2 |H|.

• The class of polynomials has in�nite VC dimension (polynomial �tting).

As a consequence of the proof of the No Free Lunch Theorem, if V (H) ≥ d, then for ε < 1
8 and

δ < 1
7 , mH (ε, δ) ≥ 1

2d (probably; there is a more accurate re�nement of this in the back of the

book). Thus,

agnostic PAC learnable =⇒ �nite VC dimension

It now only remains to show that �nite VC dimension implies PAC learnability, for which we

introduce the idea of shatter coe�cients. The shatter coe�cients SH (m) are de�ned by

SH (m) := max
c1,...,cm∈X

|{(h(c1), . . . , h(cm)) : h ∈ H}| .

For brevity, let H (C) denote the set inside the cardinality, for C = (c1, . . . , cm). Recall that

in the earlier proofs for uniform convergence, we applied the trivial union bound over functions

h ∈ H by introducing the factor |H|. As shown in Theorem 6.11, now we do the same thing,

but with the shatter coe�cients instead. That's it. The reason this works is that for a sample

S of size m, there exists a representative set C = (c1, . . . , cm) such that H (S) ⊂ H (C) and

|H (C)| = SH (m). Thus,

sup
h∈H

may be replaced by max
h∈H(C)

,

and applying the union bound gives |H (C)| = SH (m) instead of |H|. For m less than the VC di-

mension, the shatter coe�cients grow exponentially. But fortunately, beyond the VC dimension,

they grow only at polynomial rate, and this is what makes the VC dimension powerful.
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Lemma (Sauer's Lemma). Let H be a hypothesis class with VC dimension V (H) ≤ d < ∞.

Then for all m,

SH (m) ≤
d∑

i=0

(
m

i

)
≤ (m+ 1)d .

The traditional proof of Sauer's lemma is inductive in nature, and is evidently combinatorial.

Thus, log |SH (m)| ≤ d · log (m+ 1), implying that

�nite VC dimension =⇒ uniform convergence property

Thus, the following fundamental theorem is obtained.

Theorem (Fundamental Theorem of Statistical Learning). The following statements

are equivalent:

(1) H has �nite VC dimension

(2) H has the uniform convergence property

(3) H is agnostic PAC learnable

(4) H is PAC learnable

Moreover, if H has �nite VC dimension, then the sample complexity function satis�es

C1 ·
d+ log (1/δ)

ε2
≤ mH (ε, δ) ≤ C2 ·

d+ log (1/δ)

ε2
.

Proofs of the upper inequality seem to follow a speci�c procedure: �rst, using McDiarmid's

inequality,

mH (ε, δ) ≤ C
[
Rad (H) + log (1/δ)

ε2

]
,

where Rad (H) is the Rademacher complexity. The Rademacher complexity can be bounded

by covering numbers (chaining), and then by the Vapnik-Chervonenkis dimension, or by more

sophisticated techniques (e.g. entropy bounds). Indeed,

Rad(H) ≤ c1√
n

∫ H

0

√
logNr(H)dr ≤ c2H

√
V (H)
n
≤ c3H

√
log |H|
n

.

A full proof of the Vapnik-Chervonenkis inequality, which implies this theorem, can be found

in �Combinatorial Methods in Density Estimation� by Devroye and Lugosi. The lower bound

essentially follows from ideas for the No Free Lunch Theorem.


