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The majority of this talk comes from Chapter 4 of Luis Barreira's book, and from the ancient paper

of Kolmogorov and Tikhimirov entitled �E-entropy and E-capacity of sets in functional spaces�.

Topological Entropy. For any collection of sets U and V, let

U ∨ V = {U ∩ V : U ∈ U , V ∈ V},

denote the common re�nement of U and V. Recall that the de�nition of metric entropy for a dynamical

system (a transformation T that is measure-preserving with respect to a probability measure µ) is given

by

hµ(T ) = sup
ξ

lim
n→∞

1

n
Hµ

(
n−1∨
k=0

T−kξ

)
,

where the supremum is taken over all measurable partitions ξ of X. This object had a number of nice

properties � in particular, it was invariant under measure-theoretic isomorphisms, and allowed for the

characterisation of the complexity of many dynamical systems (making them distinguishable as well!).

Recall also the concept of maximal entropy; for any measure µ and partition ξ,

Hµ(ξ) ≤ log |ξ|.

where | · | here denotes the number of atoms of the partition. Aside from allowing for the formulation of

`uniform measures' as those which achieve this bound, it provides an interesting combinatorial perspective

on entropy. In fact, observe that this upper bound is purely set-theoretic; it does not involve the measure

µ at all. If we were to plug this upper bound into the de�nition of metric entropy, we arrive at a topological

invariant which somewhat extends the notion to topological dynamical systems.

De�nition 1. A topological dynamical system is a pair (X,T ), where X is a compact Hausdor� space,

and T : X → X is a continuous map. The topological entropy of T is given by

h(T ) = sup
U

lim
n→∞

1

n
log

∣∣∣∣∣
n−1∨
k=0

T−kU

∣∣∣∣∣ ,
where the supremum is taken over all �nite open covers U of X, and | · | here denotes the cardinality

of the smallest sub-cover. This limit exists because the re�nements are submultiplicative in | · | (so
|U ∨ V| ≤ |U||V|.

Like metric entropy for dynamical systems, the topological entropy enjoys the following properties:

(1) h(Tn) = nh(T )

(2) If T is a homeomorphism, then h(T ) = h(T−1)

(3) If T1, T2 : X → X are continuous, and there exists a homeomorphism φ : X → X such that

T2 = φ−1 ◦ T1 ◦ φ, then h(T1) = h(T2).

This last property is the preservation of topological conjugacy. In my opinion, having a topological

invariant form of entropy is quite natural. In some respects, a measure of complexity of the dynamics of

a continuous transformation should not require �nding an invariant probability measure to obtain. For
1
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example, the logistic map does possess the invariant measure

µ(A) =

∫
A

1

π
√
x(1− x)

dx,

but the complexity of the logistic map is plain to see without drawing attention to this measure.

Furthermore, because we invoked the principle of maximal entropy to construct the topological entropy,

it is to be expected that the topological entropy bounds the metric entropy over all T -invariant probability

measures. But even more is true.

Theorem 2 (The Variational Principle). If T : X → X is a continuous transformation of a

compact metric space (X, d), then

h(T ) = sup{hµ(T ) : µ is a T -invariant probability measure over X}.

Proof. It should be relatively evident why h(T ) ≥ hµ(T ) for any T -invariant probability measure µ over

X. The converse direction is immensely more di�cult to show; see the 4 1
2 page proof in Barreira's

book. �

Remark. The supremum in the variational principle will not necessarily be achieved by an invariant

probability measure; in fact, there are many cases when it doesn't. However, if it is achieved by some

measure µ, then T is ergodic with respect to µ.

While this provides a topological invariant with properties analogous to those of metric entropy,

we have neither a good interpretation of this object, nor a reasonable way to calculate it in many

circumstances. The objective of this note will be to follow the work of Bowen and Dinaburg in using

the underlying ideas of metric entropy on sets to form a nice interpretation of topological entropy on

a compact metric space (X, d). This will also provide a way of computing this object in a variety of

settings, as well as show when it is likely to be �nite.

Metric Entropy of Sets. The metric entropy of sets was originally conceived by Kolmogorov as a way

to measure the size of certain spaces. Today, the motivation primarily stems from the desire to compare

two measures on the same space. If µ and ν are two measures on X, then the total variation metric

between them is given by

‖µ− ν‖TV = sup
B∈B
|µ(B)− ν(B)|,

where B is the Borel σ-algebra on X. The total variation metric is an example of a metric of the form

dF (µ, ν) = sup
f∈F

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ,
where F is a separating class of functions (here, F is the class of Borel-measurable indicator functions).

Such metrics are ubiquitous in probability theory. Intuitively, the class F for the total variation metric

should be quite large indeed, and this has signi�cant repercussions. The total variation metric is rarely

small, even between probability measures that should be close (for example, if µ is discrete and ν

continuous, ‖µ − ν‖TV will certainly never be small). Finding appropriate classes F with which to

compare two probability measures became a �eld of its own in the 20th century, culminating in the

Vapnik-Chervonenkis Theorem, which serves as a foundational principle of the modern theory of machine

learning. To summarise, a good choice of F is determined by its size relative to C(X); the metric entropy

of sets provides a general and concrete way of obtaining this.

Let (X, d) be a metric space, with a relatively compact subset A. By de�nition, we know that for any

ε > 0, A can be covered by �nitely many balls of radius ε. This observation leads us to the de�nition of

an ε-covering:
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De�nition 3. A collection of subsets U of A is called an ε-covering of A if the diameter of U , d (U) ≤ ε
for any U ∈ U , and X ⊂

⋃
U∈U U .

• Let Nε (A, d) denote the minimal number of sets in an ε-covering of X.

• The metric entropy of the set (A, d) is the function Hε (A, d) de�ned by

Hε (A, d) = logNε (A, d) .

The metric entropy of a set is a metric invariant, in the sense that it depends only on A and d, and

not on the overarching space X (this may seem obvious, but historically speaking, such an object was

mindblowing at the time). In particular, the growth rate of the metric entropy of a set in ε provides a

good way of measuring the size of a set, without requiring measures.

Remark. There are, in fact, many ways of de�ning the metric entropy of a set, in terms of packing

numbers, internal/external covering numbers, sizes of ε-nets, etc. However, for any of these di�erent

de�nitions, the corresponding metric entropies di�er by at most a constant independent of ε. Usually

this constant is irrelevant, as we are interested primarily in the order of the metric entropy in ε.

Example 4. Consider the Euclidean space (Rm, ‖·‖2), and suppose X ⊂ Br (0). Then

Hε (X, ‖·‖2) ≤ m log

(
2rm

ε

)
.

By extension, any Banach space of �nite dimension will have metric entropy of order O (log (1/ε)). The

same is true for compact manifolds. Spaces with metric entropy of this order are considered small.

Example 5. Let Cα([0, 1]m) denote the class of H older-continuous functions of order α on the set [0, 1]m.

Now let F denote those H older-continuous functions with H older norm bounded by one. This space is

a relatively compact subset of C([0, 1]m) (by the Arzela-Ascoli theorem). Although more challenging, its

metric entropy is given by

Hε(F , ‖ · ‖∞) = O(ε−m/α).

The growth rate of this metric entropy is signi�cantly greater than the �nite-dimensional case.

Example 6. A logarithmic growth rate of the metric entropy does not imply a �nite-dimensional space,

however. Let Φ denote the set of entire functions in m arguments satisfying

|f(z1, . . . , zm)| ≤ C exp

(∑
i

σi|=(zi)|p
)

for �xed C > 0 and σ, p. Let ‖f‖∞,m = sup|z1|,...,|zm|≤1 |f(z1, . . . , zm)|. Then

Hε(Φ, ‖ · ‖∞,m) = O
(

log
1

ε

)m(p−1)/(p+1)

.

If p = (m + 1)/(m− 1), then this metric entropy achieves the same growth rate as a �nite-dimensional

space. In essence, this function space is so regular and so small, that it can be treated as if it was

�nite-dimensional. Many other analytic function spaces possess similar growth rates as well.

The Bowen-Dinaburg Construction. Let us now use the concept of metric entropy of sets to provide

a more concrete description of topological entropy for compact metric spaces. Suppose that U is an ε-

covering of X. By de�nition, Nε(X, d) ≤ |U|. Let Un =
∨n−1
k=0 T

−kU for each n ≥ 1. If x, y ∈ X lie in the

same set in Un, then there exist sets U1, . . . , Un such that T k−1(x), T k−1(y) ∈ Uk for each k = 1, . . . , n.

Therefore

dn,T (x, y) := max
k=0,...,n−1

d(T k(x), T k(y)) < ε,

and so Un is an ε-covering of X under the new metric dn,T , and Nε(X, dn,T ) ≤ |Un|. A similar argument

provides an upper bound as well, this time involving Lebesgue numbers.
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Lemma 7 (Lebesgue's Number Lemma). For any open cover U of a compact metric space X, there

is a number δ > 0 such that every subset of X with diameter less than δ is contained in some U ∈ U .
Equivalently, any δ-covering of X is a re�nement of an subcover U . Any such δ is called a Lebesgue

number.

If U has Lebesgue number δ, then |U| ≤ Nδ(X, d). Similarly, by the above argument, |Un| ≤
Nδ(X, dn,T ). Therefore, by letting

Hε(T ) = lim
n→∞

1

n
Hε(X, dn,T ),

for any ε-covering U with Lebesgue number δ,

Hε(T ) ≤ lim
n→∞

log |Un|
n

≤ Hδ(T ),

which implies that

h(T ) = sup
ε>0
Hε(T ).

Thus, we have obtained an alternative construction of topological entropy on compact metric spaces.

Concerning the �niteness of topological entropy, the supremum over ε may be cause for concern. Fortu-

nately, unlike metric entropy for sets...

Lemma 8. If T is Lipschitz and X is a compact manifold, then Hε(T ) is bounded in ε.

Proof. Since d(T (x), T (y)) ≤ Ld(x, y) for all x, y ∈ X for some L ≥ 1, it follows that

d(x, y) ≤ L−nε implies that dn,T (x, y) ≤ ε.

Therefore

Hε(X, dn,T ) ≤ HL−nε(X, d) ≤ C| log(L−nε)| ≤ C(n logL+ | log ε|),

since the metric entropy of a compact manifold is O(log(1/ε)). It follows then that Hε(T ) ≤ C logL,

which is independent of ε. �

Since the metric entropy for sets provides a measure of the size of a set, Hε(T ) describes the

size/complexity of the space of orbits under T . More precisely, if we can only distinguish two points that

are more than ε distance apart, Hε(T ) will describe the average exponential growth rate of the number

of distinguishable orbits. Topological entropy is therefore a measurement of the exponential complexity

of a system. I like to think of this as the rate at which trajectories are splitting apart, although the

Lyapunov exponent provides a more precise description of this.

To �nish up, let's calculate the topological entropy in a few example cases.

Example 9. If T is an isometry with respect to d, then d(T k(x), T k(y)) = d(x, y), and so Hε(X, dn,T ) =

Hε(X, d) and h(T ) = 0. Since any rotation is an isometry, h(T ) = 0 in these cases (as expected).

Example 10. Consider the expanding map Eq : S1 → S1 for q > 1 given by Eq(x) = qx mod 1. If

d(x, y) < q−n, then

dn,Eq
(x, y) = qn−1d(x, y).

Let {x0, . . . , xN−1} denote a partition of S1 into N = qn+k subintervals, for some k ≥ 1. Since

d(xi, xi+1) < q−n, it follows that dn,Eq
(xi, xi+1) = q−k−1. Therefore

Nq−k−1(S1, dn,Eq
) = qn+k.

Therefore,

h(Eq) = lim
k→∞

lim
n→∞

1

n
Hq−k−1(S1, dn,Eq

) = log q.

Now, since h(Eq) = hLeb(Eq), the Lebesgue measure is the Eq-invariant measure of maximal entropy.


