
PROOF OF THE BERRY-ESSEEN THEOREM

Definition. A Gibbs process is a point process that is absolutely continuous with
respect to a Poisson process.

Let Af (x) = f ′ (x) − xf (x) denote the Stein operator for a standard normal
random variable (Z ∼ N (0, 1)). The main objective is to bound |EAf (W )| where
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∑n
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EAf (W ) = Ef ′ (W )− E [Wf (W )] .

Begin with the second term: first observe that since EXi = 0 and Xi,Wi are
independent,
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E [f ′ (W )−Wf (W )] =
1

n

n∑
i=1

E
[
f ′ (W )− f ′ (Wi)− n−1/2X3

i f
′′ (ξi)

]
=

1

n

n∑
i=1

E
[
n−1/2Xif

′′ (ηi)− n−1/2X3
i f
′′ (ξi)

]
By Holder’s inequality, E |Xi| ≤
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The theorem follows from Stein’s lemma:

|Ef (W )− Ef (Z)| ≤
4E
∣∣X3

i

∣∣ ‖f ′‖∞√
n

1


