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Objective

To show that two random elements X and Z are

close in distribution:

Ef (X ) ≈ Ef (Z ) for f ∈ F .



What you can do

By the Central Limit Theorem,

√
n

(
X̄n − µ
σ

)
D→ N (0, 1)

But how good is this approximation for finite n?



What you can do

Theorem (Berry-Esseen)

Let X1,X2, . . . be iid w/ EXi = 0 and EX 2
i = 1.

If Z ∼ N (0, 1) then∣∣Ef (
√
n X̄n)− Ef (Z )

∣∣ ≤ 4‖f ′‖∞E|X 3
i |√

n



What you can do

Theorem (Schuhmacher-Stucki)

Let Ξ,H be Gibbs processes with conditional

intensities ν and λ respectively, with respect to

µ. Then

|Ef (Ξ)− Ef (H)|

≤ C (λ)‖f ‖∞
∫

E|ν(x |Ξ)− λ(x |Ξ)|µ(dx).



An analytic approach

Estimating f (b)− f (a):

apply Taylor’s Theorem!

f (b)− f (a) =
FTC

∫ b

a

f ′(x)dx =
MVT

(b − a)f ′(ξ).

bound the derivative → bound the difference.
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An analytic approach

More generally,

f (y )− f (x) =

∫
γ[x ,y ]

∇f (r ) · dr ,

for any curve γ[x , y ] from x to y .

−→ Taylor’s Theorem in multiple variables



The stochastic analogue

A ‘curve’ between two random
variables

— a stochastic process!
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The stochastic analogue

Theorem (Ito’s Lemma)
Let Xt satisfy the stochastic differential equation
dXt = µ(Xt)dt + σ(Xt)dWt ,

Ef (Xt)− Ef (X0) =

∫ t

0

EAf (Xs)ds,

where for Σ(x) = σ(x)σ(x)>,

Af (x) =
1

2

n∑
i ,j=1

Σij(x)
∂2

∂xi∂xj
f (x) +

n∑
i=1

µi(x)
∂

∂xi
f (x).



The stochastic analogue

More generally,

Theorem (Dynkin’s Formula)

Let Xt be a Markov process with generator A.

Then

Ef (Xt)− Ef (X0) =

∫ t

0

EAf (Xs)ds.



Barbour’s generator approach

Suppose Xt has equilibrium distribution Z .

If X0 ∼ X , then
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Suppose Xt has equilibrium distribution Z .

If X0 ∼ X , then

Ef (Z )− Ef (X ) =

∫ ∞
0

EAf (Xs)ds.



Barbour’s generator approach

Proposition (Ethier & Kurtz, Proposition 1.5)∫ ∞
0

EAf (Xs)ds = EAgf (X0)

where gf is the function

gf (x) =

∫ ∞
0

Ex f (Xs)− Ef (Z )ds
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Barbour’s generator approach

Suppose Xt has equilibrium distribution Z .

If X0 ∼ X , then

Ef (X )− Ef (Z ) = EAgf (X ).

where gf (x) = −
∫∞

0 Ex f (Xs)− Ef (Z )ds.

This is the foundation of Stein’s method



Examples for Xt

Ornstein-Uhlenbeck: Z ∼ N (0, 1):

dXt = −Xtdt +
√

2dWt

The generator is

Af (x) = f ′′(x)− xf ′(x).



Examples for Xt

Langevin SDE: Z with density π:

dXt = ∇ log π(Xt)dt +
√

2dWt

The generator is

Af (x) = ∆f (x) +∇f (x) · ∇ log π(x).

This might look familiar...



Stein’s trick

For the generator A:

1 EAf (X ) = 0 for all f ∈ C∞ ⇐⇒ X ∼ Z

2 gf is the unique solution to the Stein
equation

f (x)− Ef (Z ) = Agf (x).



Stein’s trick

For a Stein operator A for Z :

1 EAf (X ) = 0 for all f ∈ F ⇐⇒ X ∼ Z
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Stein’s trick

For a Stein operator A for Z :

1 EAf (X ) = 0 for all f ∈ F ⇐⇒ X ∼ Z

2 gf is the unique solution to the Stein
equation

f (x)− Ef (Z ) = Agf (x).

Stein’s Method: bound supf ∈F |EAgf (X )|



“The Stein operator”

For Z with density π, the generator of
the Langevin SDE is

Af (x) = ∆f (x) +∇f (x) · ∇ log π(x)



“The Stein operator”

For Z with density π, “the” Stein
operator for Z is

Aφ(x) = ∇ · φ(x) + φ(x) · ∇ log π(x)



Kernelised Stein Discrepancy

If H is a reproducing kernel Hilbert space

sup
φ∈H
|EAφ(X )| = EK (X ,X ′),

where K is a certain kernel (Liu et al, 2016).

A direct way to estimate discrepancy between a

sample and a distribution



Proof of the Berry-Esseen Theorem

Stein operator for N (0, 1):

Let Af (x) = f ′(x)− xf (x)

Let W = n−1/2
∑n

i=1 Xi =
√
n X̄n

Let Wi = n−1/2
∑n

j=1,j 6=i Xj = W − n−1/2Xi

Taylor’s Theorem:
f (W )− f (Wi) = 1√

n
Xi f
′ (Wi) + 1

nX
2
i f
′′ (ξi)
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Proof of the Berry-Esseen Theorem

Lemma (Stein’s Lemma)

Let Af (x) = f ′(x)− xf (x) be the Stein

operator of N (0, 1). Then

‖g ′′f ‖∞ ≤ 2‖f ′‖∞.



Proof of the Berry-Esseen Theorem

Theorem (Berry-Esseen)

Let X1,X2, . . . be iid w/ EXi = 0 and EX 2
i = 1.

If Z ∼ N (0, 1) then

|Ef (W )− Ef (Z )| ≤ 4‖f ′‖∞E|X 3
i |√

n



For any distribution there are
infinitely many such Xt .

What makes a good one?



Contraction rates

Rapid convergence of Xt to stationarity

If Xt is exponentially ergodic, then

‖gf ‖∞ ≤ C‖f ‖∞
If Xt is hypercontractive with constant λ,

then ‖∇gf ‖∞ ≤ λ‖∇f ‖∞.
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