STOCHASTIC CONTINUOUS NORMALIZING FLOWS TRAINING SDES AS ODES

LIAM HODGKINSON, CHRIS VAN DER HEIDE, FRED ROOSTA, MICHAEL W. MAHONEY

NEURAL ODES	CONTINUOUS NORMALIZING FLOW	NEURAL SDES
Ordinary differential equations (ODEs) formed from single-(or multi-)layer neural networks are called <i>neural ODEs</i> :		An Itô stochastic differential equation (SDE) is of the form
$\frac{\mathrm{d}}{\mathrm{d}t}Z(t) = f(Z(t), t, \theta). \tag{1}$	tinuous normalizing flow [1, 2]. It can be trained by <i>maximum likelihood</i> <i>estimation</i> or <i>variational inference</i> using	$dZ_t = \mu(Z_t, t, \theta) dt + \sigma(Z_t, t, \theta) dB_t$, (3) where B_t is Brownian motion , μ is the drift,
They can be trained with the <i>adjoint method</i> [1].	Theorem (Chen et al., 2018). If $Z(t)$ satisfies (1), the probability density p_t of $Z(t)$ satisfies	and - the diffusion coefficient

STRATONOVICH CORRECTION

STEP 1

Because the chain rule does not hold in Itô calculus, *naive approximations do not work*.

Solution: Use a different calculus

The Itô SDE (3) can be *converted to a Stratonovich SDE*:

 $dZ_t = \tilde{\mu}(Z_t, t, \theta)dt + \sigma(Z_t, t, \theta) \circ dB_t,$ (4)

using a Stratonovich drift correction.

Stratonovich SDEs satisfy the chain rule, and *behave like ODEs* (reversible, approximable).

$\frac{\mathrm{d}}{\mathrm{d}t} \log p_t(Z(t)) = -\nabla_z \cdot f(Z(t), t, \theta)$ (2)

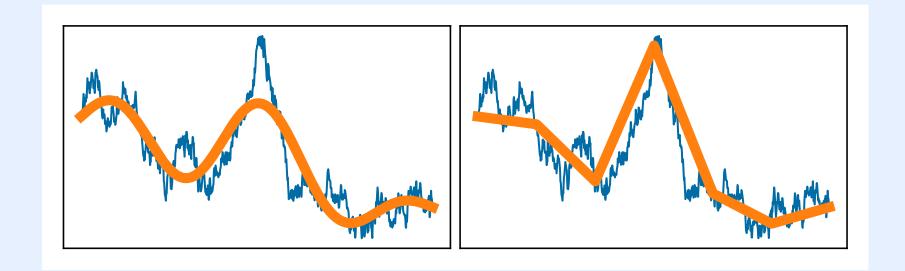
WONG-ZAKAI APPROXIMATION

STEP 2

Let $B(t) \approx B_t$ be a pathwise **approxima**tion of Brownian motion.

Approximations include:

- *Piecewise linear:* Linear interpolation of Gaussian random walk—recovers Euler scheme.
- *Karhunen-Loève expansion:* A smooth Fourier series for Brownian motion.



injectea noise.

Problem: Training SDEs is often complex.

Objective: Develop a general procedure for training SDEs using ODE training procedures.

Three Steps:

- 1. Perform a Stratonovich drift correction
- 2. Approximate the Brownian motion
- 3. Train the resulting random ODE

TRAINING A RANDOM ODE

STEP 3

The approximation (5) is an **ODE** with latent variable B(t). It can be trained using

REGULARIZATION

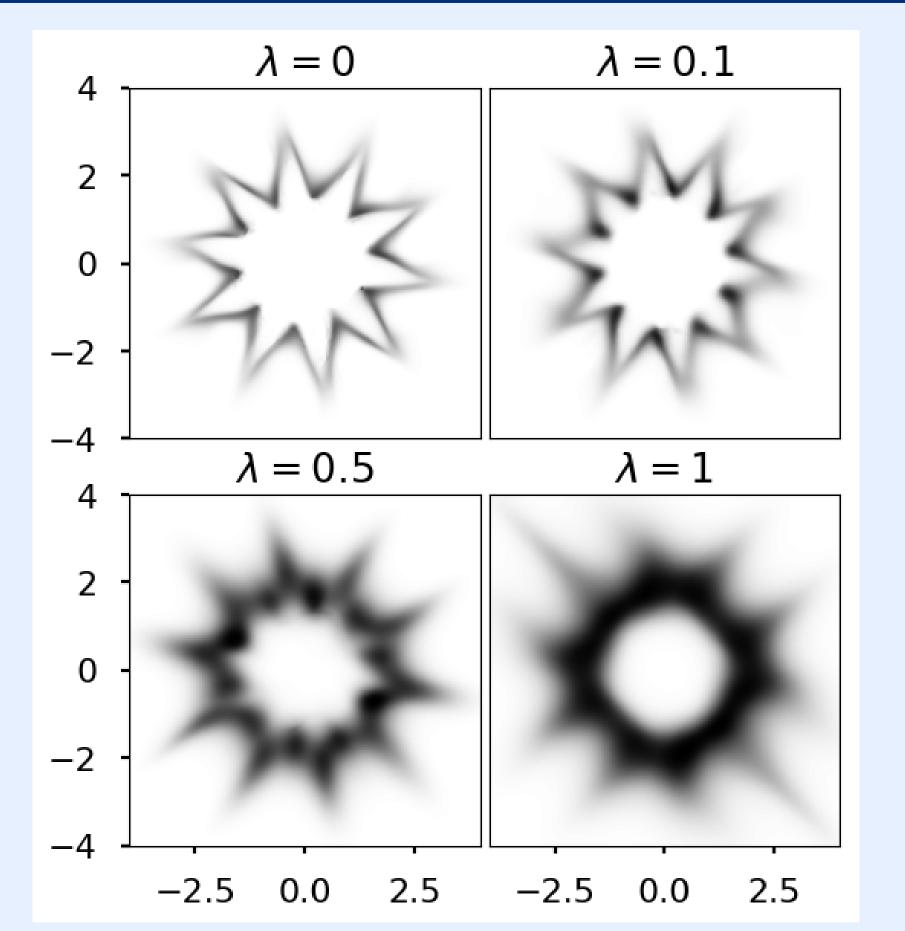


Figure 2: Fitting a star-shaped density with *stochastic continuous normalizing flows* with drift parameterized by a 3-layer NN, and diffusion coefficient λI . Increasing the diffusion adds a *regularization* effect to the fit. Figure 1: Approximations (orange) of Brownian motion (blue): (left) Karhunen-Loève; (right) linear spline/Euler

A *Wong–Zakai approximation* of (4) is the random ODE

$$\frac{\mathrm{d}}{\mathrm{d}t}Z(t) = \tilde{\mu}(Z(t), t, \theta) + \sigma(Z(t), t, \theta) \frac{\mathrm{d}B(t)}{\mathrm{d}t}$$
(5)

SAMPLERS

Langevin diffusions are commonly used as *sampling algorithms*. Can we learn them?

5	fixed σ	variable σ
5		

any ODE training procedure.

Metatheorem. The following procedures are consistent as $B(t) \rightarrow B_t$.

- Stochastic adjoint method: Adjoint method applied to (5)—equivalent to [3].
- **Density estimation:** Monte Carlo estimation for density using (2).
- Stochastic continuous normalizing flow (SCNF): Perform semi-implicit variational inference using (2).

REFERENCES

[1] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equations. *arXiv preprint arXiv:1806.07366*, 2018.

ACKNOWLEDGEMENTS

This work has been supported by the Australian Research Council Centre of Excellence for Mathematical & Statistical Frontiers (ACEMS), under grant number CE140100049. We would also like to acknowledge DARPA, NSF, and ONR for providing partial support.

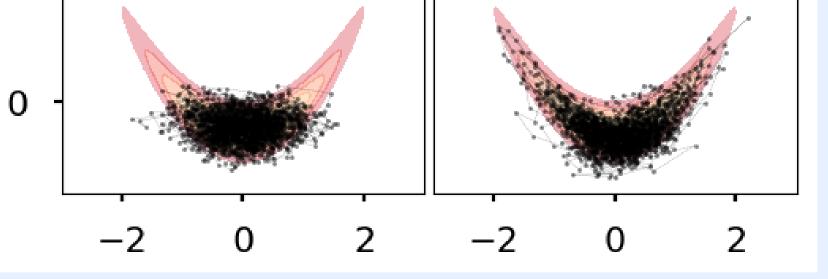


Figure 3: Simulating SDEs trained to a banana target distribution with drift parameterized by a 3-layer NN. (left) Diffusion coefficient is fixed $\sigma \equiv I$; (right) Diffusion coefficient parameterized by 3-layer NN.

[2] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD: Free-form continuous dynamics for scalable reversible generative models. *arXiv* preprint arXiv:1810.01367, 2018.

[3] Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients for stochastic differential equations. In *International Conference on Artificial Intelligence and Statistics*, pages 3870–3882. PMLR, 2020.

Berkeley UNIVERSITY OF CALIFORNIA

37th Conference on Uncertainty in Artificial Intelligence July 27-30, 2021 Online

