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NEURAL ODES
Ordinary differential equations (ODEs)formed from single-(or multi-)layer neuralnetworks are called neural ODEs:

d

dt
Z(t) = f(Z(t), t, θ). (1)

They can be trained with the adjoint
method [1].

CONTINUOUS NORMALIZING FLOW
Under the assumption that Z(0) ∼ p0(θ),(1) becomes a generative model — a con-tinuous normalizing flow [1, 2].
It can be trained by maximum likelihood
estimation or variational inference using
Theorem (Chen et al., 2018). IfZ(t) satis-
fies (1), the probability density pt ofZ(t) sat-
isfies

d

dt
log pt(Z(t)) = −∇z · f(Z(t), t, θ) (2)

NEURAL SDES
An Itô stochastic differential equation(SDE) is of the form
dZt = µ(Zt, t, θ)dt+ σ(Zt, t, θ)dBt, (3)

whereBt is Brownian motion,µ is the drift,and σ the diffusion coefficient.
(Neural) SDEs are (neural) ODEs with

injected noise.

Problem: Training SDEs is often complex.
Objective: Develop a general procedurefor training SDEs using ODE training pro-cedures.
Three Steps:1. Perform a Stratonovich drift correction2. Approximate the Brownian motion3. Train the resulting random ODE

STRATONOVICH CORRECTION
STEP 1

Because the chain rule does not hold in Itôcalculus, naive approximations do not work.
Solution: Use a different calculus

The Itô SDE (3) can be converted to a
Stratonovich SDE:
dZt = µ̃(Zt, t, θ)dt+ σ(Zt, t, θ) ◦ dBt,(4)using a Stratonovich drift correction.

Stratonovich SDEs satisfy the chain rule,and behave like ODEs (reversible, approx-imable).

WONG–ZAKAI APPROXIMATION
STEP 2

Let B(t) ≈ Bt be a pathwise approxima-
tion of Brownian motion.
Approximations include:• Piecewise linear: Linear interpolationof Gaussian random walk—recovers Eu-ler scheme.• Karhunen-Loève expansion: A smoothFourier series for Brownian motion.

Figure 1: Approximations (orange) of Brownian mo-tion (blue): (left) Karhunen-Loève; (right) linearspline/Euler
A Wong–Zakai approximation of (4) is therandom ODE
d

dt
Z(t) = µ̃(Z(t), t, θ)+σ(Z(t), t, θ)

dB(t)

dt
.

(5)

TRAINING A RANDOM ODE
STEP 3

The approximation (5) is an ODE with la-
tent variable B(t). It can be trained using
any ODE training procedure.
Metatheorem. The following procedures
are consistent asB(t)→ Bt.

• Stochastic adjoint method: Adjointmethod applied to (5)—equivalent to[3].• Density estimation: Monte Carlo esti-mation for density using (2).• Stochastic continuous normalizing flow
(SCNF): Perform semi-implicit varia-tional inference using (2).

REGULARIZATION

Figure 2: Fitting a star-shaped density with stochas-
tic continuous normalizing flows with drift parame-terized by a 3-layer NN, and diffusion coefficient λI .Increasing the diffusion adds a regularization effectto the fit.

SAMPLERS
Langevin diffusions are commonly used as
sampling algorithms. Can we learn them?

Figure 3: Simulating SDEs trained to a banana targetdistribution with drift parameterized by a 3-layer NN.(left) Diffusion coefficient is fixed σ ≡ I ; (right) Dif-fusion coefficient parameterized by 3-layer NN.
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