
NORMAL APPROXIMATIONS FOR

OCCUPANCY PROCESSES USING STEIN’S METHOD
Liam Hodgkinson Ross McVinish Philip K. Pollett

liam.hodgkinson@uqconnect.edu.au r.mcvinish@uq.edu.au pkp@maths.uq.edu.au

OCCUPANCY PROCESSES
A discrete-time Markov chain Xt = (Xi,t)

n
i=1 on {0, 1}n

I number of nodes n
I given Xt = x, X1,t+1, . . . ,Xn,t+1 are independent
I potentially time-inhomogeneous
I dynamics dictated by a one-step global rule Pt = (Pi,t)

n
i=1:

Pi,t(x) := P(Xi,t+1 = 1 | Xt = x)

t = 1 t = 2 t = 3 t = 4

Xt

Pt(Xt)

Figure 1: An example of an occupancy process on a 13× 13 grid. The process Xt is represented in

green with the underlying heat map representing the probabilities Pi,t(Xt) of each node of the

process for the next time point. Here, i indexes grid points.

I general class of processes with examples appearing in ecology, epidemiology (see below), physics, computer science, social science...
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Figure 2: A simulation of a spatially heterogeneous epidemic model (an example of an occupancy process) using European population density data. The initial outbreak begins in Paris and spreads via airports and local transportation.

PROBLEM: When there are many nodes, long-term dynamics become complex; classical analysis techniques are ineffective.
OBSERVATION: When there are many nodes, trajectories of weighted sums

∑n
i=1 wiXi,t often display Gaussian fluctuations.

OBJECTIVE: Approximate by Gaussian processes that are simpler to analyse, and use Stein’s method to bound the error.

STEIN’S METHOD
A general technique to bound the error between
Eg(Y) and Eg(Z):

I a random element Z usually approximating Y
I over test functions g ∈ G.

Idea: Let Yt be a Markov process with generator L
I starting from the distribution of Y (Y0 ∼ Y),
I with stationary distribution Y∞ ∼ Z .
I For continuous functions g,

Eg(Y) − Eg(Z) =
∫∞

0
EYLg(Yt)dt = ELfg(Y),

where fg(y) =
∫∞

0 Eyg(Yt)dt.
I Generator L contains information about Z .
I If Z ∼ N(0,σ2) then Lf(x) = σ2f(x) − xf(x).

The Method:
1. Choose a class of test functions G;

I define dW(X, Z) = sup‖g ′‖∞61 |Eg(X) − Eg(Z)|.

2. Bound the functions fg for each g ∈ G.
3. Use this with properties of Y to bound ELfg(Y).

APPROXIMATIONS
Estimate evolving probability of occupancy by the

dynamical system

pt+1 = Pt(pt), p0 = X0

about which there is the normal approximation

Zt+1 = pt+1 + DPt(pt)(Zt − pt)

+N(0,pt(1 − pt)).

Theorem There is a universal constant c > 0 such that

for any w ∈ Rn and t > 0, if Z
(w)

t = n−1/2w · Zt,

dW

( w
n1/2 · Xt, Z

(w)

t

)
6

cκt‖w‖3∞
Var(Z

(w)

t )3/2

√
1 + log n

n
.

I κt depends on the derivatives of Pi,s up to third
order, i = 1, . . . , n, s = 0, . . . , t.

I Error is small if ∂jPi,t (dependence) is small for
each i, j = 1, . . . , n, i 6= j.

QUASI STATIONARITY
Ascertaining long-term behaviour is the
ultimate application:

I pt → p∞? — theory of dynamical
systems

I Zt → Z∞? — standard theory

I if both, under general

assumptions, can show that under

some coupling

E
∣∣∣ w
n1/2 · (Xτn − Z∞)

∣∣∣→ 0

where τn = O(log n).

I long-term behaviour of Xt is
ascertained from that of pt and Zt.
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