
GENERALIZATION BOUNDS USING LOWER TAIL EXPONENTS IN STOCHASTIC OPTIMIZATION
LIAM HODGKINSON, UMUT ŞIMşEKLI, RAJIV KHANNA & MICHAEL W. MAHONEY

GENERALIZATION BOUNDS
Empirical Risk Minimization

To train parameterized models, solve
w∗ = argmin

w∈Rd

Rn(w)

Rn(w) :=
1

n

n∑
i=1

ℓ(w,Xi),

for a loss ℓ depending on weights w and data
X1, . . . , Xn

iid∼ D. To quantify influence ontest performance, seek bounds on the ex-
cess risk

En(w∗) = Rn(w
∗)−

generalization︷ ︸︸ ︷
EDRn(w

∗)

TYPES OF DYNAMICS
Brownian Motionlight-tailed
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Lévy Flightheavy-tailed

0.4 0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

Different stochastic optimizers (e.g. SGD,momentum, Adam) exhibit trajectories withdifferent properties.
How do the dynamics of the optimizer

influence test performance?

HEAVY TAILS IN MACHINE LEARNING
Norms of optimizer steps in deep learning are heavy-tailed for large step sizes

Figure 1: Histograms of (a) gradient norms from iteratesof SGD on a deep learning task; (b) norms of a Gaussianrandom vector, as shown in [1].

As shown in [2], under a (continuous-time)Feller process model of SGD,
heavy-tailed norms ↗ =⇒ excess risk ↘

• Optimizer trajectories exhibiting Lévyflights can be more effective• Assumptions are complicated• Can this be extended to discrete time?

CORRELATIONS WITH ACCURACY
Training neural networks on MNIST and CIFAR10 under a variety of hyperparameters.

(FCN5) fully connectedwith 5 layers (FCN7) fully connectedwith 7 layers (CNN9) convolutionalmodel with 9 layers

Figure 2: Lower tail exponents versus excess risk. Different colors represent different step-sizes and different markersrepresent different batch-sizes.

MAIN RESULT
Assume that the iterates of the optimizer
W1,W2, . . . ,Wk, . . . , are a Markov chain.
Developed a general proof technique forlinking optimizer dynamics to generalizationusing generic chaining.
APPLY TO TAIL EXPONENTS
• The upper tail exponent (in previousworks):
P(∥Wk+1−Wk∥ > r) ≈ O(r−β), r → ∞.

• The lower tail exponent (we consider):
P(∥Wk+1−Wk∥ ≤ r) ≈ O(rα), r → 0+.

For most models of Lévy flights, α ≈ β.
Theorem (Informal). Assume that the iterates
Wk of an optimizer have lower tail exponent
α in the neighbourhood of a local optimumw∗.
Then an upper bound on

E sup
k=1,...,m

|En(Wk)|

is positively correlated with α. In other words,

lower tail exponent↘ =⇒ excess risk↘
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