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PHASES OF LEARNING
Explorationlarge learning rate(sampler)

Exploitationsmall learning rate(“convex” optimizer)

Every stochastic optimizer typically exhibits
two phases as the learning rate is decreased.Later stages are well-studied using convex
optimization. Earlier stages and their effecton generalization remain elusive.
OBJECTIVE

Investigate how a stochastic optimizer
explores the loss landscape

1. Model stochastic optimization as a
Markov chain

2. Fix all hyperparameters to particular val-ues (time-homogeneous; no annealing)
3. Examine stationary distribution (tails ofthe stationary distribution are an indica-tion of capacity to explore)
Empirically, fluctuations in SGD have beenobserved to be heavy-tailed (Şimşekli et al.,2019), i.e. P(‖∆W‖ > w) ≈ cw−α — why?

STOCHASTIC OPTIMIZERS AS MARKOV CHAINS
Problems

Minimize the expected loss over data X :
w∗ = arg min

w
EX∼D`(w,X),

for a loss ` depending on weights w and data
X from some datasetD.

Solve by Fixed Point Iteration
The sequence of iterated random functions

Wk+1 = Ψ(Wk, Xk), Xk
iid∼ X. (1)

e.g. SGD with learning rate γ:
Ψ(w, x) = w − γn−1 ∑n

i=1∇`(w, xi).

Any stochastic optimizer (SGD, momentum, Adam, stochastic Newton) can be written as (1).

Two types of noise: Wk+1 ≈ ∇Ψ(Wk, Xk)︸ ︷︷ ︸multiplicative
(Wk − w∗) + Ψ(w∗, Xk)︸ ︷︷ ︸additive

ADDITIVE VS. MULTIPLICATIVE NOISE
Multiplicative noise enjoys both wide heavy-tailed exploration and efficient exploitation.

Figure 1: Histograms of 106 iterations of gradient descent with combinations of small (left), moderate (center), andstrong (right) versus light additive (a), heavy additive (b), and multiplicative noise (c), applied to a non-convex objective.
Initial starting location for the optimization is also shown.

MAIN RESULT
Multiplicative noise results in heavy-tailed

fluctuations in stochastic optimizers

Theorem. SupposeX is non-atomic and there
exist kΨ,KΨ,MΨ, w

∗ such that as ‖w‖ → ∞,
kΨ(X)− o(1)

≤ ‖Ψ(w,X)−Ψ(w∗, X)‖
‖w − w∗‖

≤KΨ(X) + o(1).

Suppose that P(kΨ(X) > 1) > 0 and
E logKΨ(X) < 0. Then the stationary
distribution is heavy-tailed, in particular, for
some µ, ν, Cµ, Cν > 0,

Cµ(1 + t)−µ ≤ P(‖W∞‖ > t) ≤ Cνt−ν .

e.g. holds for ridge regression when γ is large;for SGD, when∇2`(w,X) � 2
γ or ≺ 2

γ for all
w is possible.
FACTORS
The following results in heavier tails (and ap-pear to correlate with improved generaliza-tion in computer vision):• Increasing step size• Decreasing batch size• Increasing L2 regularization• Non-adaptive optimizers (SGD not Adam)• Increasing dimension; e.g. ResNet:
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