MULTIPLICATIVE NOISE AND HEAVY TAILS IN STOCHASTIC OPTIMIZATION
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PHASES OF LEARNING STOCHASTIC OPTIMIZERS AS MARKOV CHAINS MAIN RESULT

Exploration Exploitation Problems Solve by Fixed Point Iteration Multiplicative noise results in heavy-tailed

large learning rate small learning rate Minimize the expected loss over data X: The sequence of iterated random functions fluctuations in stochastic optimizers
(sampler) (“‘convex” optimizer)

. . f(w, X) y Theorem. Suppose X is non-atomic and there
w* = argu{nm Cx ~pl(w, X)), Wiyr = W (Wi, Xg), Xi~X. (1) W exist ky, Ky, My . w* such that as |w|| — oo,
ke (X) —o(1)
¥ (w, X) — w(w", X)|
U(w,z) =w—yn 3, VEi(w, z;). B Jw —w|
< Ku(X)+o(1).

for a loss ¢ depending on weights w and data  €-8 SGD with learning rate ~:
X from some dataset D.

Any stochastic optimizer (SGD, momentum, Adam, stochastic Newton) can be written as (1).

Every stochastic optimizer typically exhibits Suppose that P(kw(X) > 1) > 0 and

two phases as the learning rate is decreased. Two types of noise: Wit1 ~ W(Wk —wi) w Llog K¢ (X) < 0. Then the stationary

Later stages are well-studied using convex multiplicative additive distribution is heavy-tailed, in particular, for
some p,v,C,,,C, > 0,

optimization. Earlier stages and their effect

on generalization remain elusive. ADDITIVE VS. MULTIPLICATIVE NOISE Co(14 1)~ < P(|[Wa| > t) < Cot .
Multiplicative noise enjoys both wide heavy-tailed exploration and efficient exploitation.

OB l ECTIVE <mall moderate strong e.g. holds for ridge regression when ~ is large;

2 2
Investigate how a stochastic optimizer fO|.’ SGD, _When V2 (w,X) = = or < = forall
explores the loss landscape w Is possible.
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. Model stochastic optimization as a
Markov chain

(a) additive (light)

The following results in heavier tails (and ap-
pear to correlate with improved generaliza-
tion in computer vision):
T s » Increasing step size

Decreasing batch size
Increasing L regularization
Non-adaptive optimizers (SGD not Adam)
Increasing dimension; e.g. ResNet:

. Fix all hyperparameters to particular val-
ues (time-homogeneous; no annealing)

. Examine stationary distribution (tails of
the stationary distribution are an indica-
tion of capacity to explore)

(b) additive (heavy)

Empirically, fluctuations in SGD have been
observed to be heavy-tailed (Simsekli et al.,
2019),i.e. P(| AW || > w) = cw™* — why?
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(c) multiplicative
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providing partial support of this work. strong (right) versus light additive (a), heavy additive (b), and multiplicative noise (c), applied to a non-convex objective. alpha = 6.1096 alpha = 1.6601
Initial starting location for the optimization is also shown.
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