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A one-dimensional SDE can be thought of as the limit of stochastic processes satisfying

Xt+h = Xt + hµ (t,Xt) +
√
h · σ (t,Xt) · Zt,

with Zt ∼ N (0, 1) as h→ 0. In this case, the standard di�erential notation for this process in

the Ito form is

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt.

The key approach to solving SDEs analytically is Ito's lemma, which is a form of chain rule for

SDEs. For this process Xt, there is

df (t,Xt) =

(
ft + µfx +

1

2
σ2fxx

)
dt+ σfxdWt.

What makes Ito's lemma di�erent from a regular chain rule is the correction term 1
2
σ2fxxdt.

As an example, by change of variables Yt = logXt, it is found that for Xt satisfying geometric

Brownian motion

dXt = µXtdt+ σXtdWt,

with µ, σ constant, we have that

Xt = X0 exp

[(
µ− 1

2
σ2

)
t+ σWt

]
,

where the correction term is

C (t) = exp

(
−1

2
σ2t

)
.

Usually, it is quite di�cult to solve an SDE analytically, so we attempt to simulate one instead.

The standard (simplest) scheme is Euler's scheme where we just use the discretisation above:

Xt+h = Xt + hµ (t,Xt) +
√
h · σ (t,Xt) · Zt,

for some �xed step size h. This is an analogue of Euler's scheme for ODEs, which is generally

quite terrible. However, Maruyama did show that if µ, σ are smooth, then

E
[∥∥Xt −Xh

t

∥∥2
]
≤ Ch,

for some C > 0 where Xh
t is the Euler approximation of Xt. We note that since this scheme

relies on previous terms, the error compounds exponentially, so a smaller error term (or error

term of smaller order) is essential here. An alternative is the implicit Euler scheme given by

Xt+h = Xt + hµ (t,Xt+h) +
√
h · σ (t,Xt) · Zt,

which works better for sti� equations, but generally seems di�cult since the inversion assumes

some degree of regularity. The most popular improvement to this scheme is Milstein's method.
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Proposition (Milstein Method). The di�usion process Xt can be discretised by

Xt+h = Xt + hµ (t,Xt) + σ (t,Xt)
√
h · Zt + σx (t,Xt)σ (t,Xt)

(
Z2

t − 1
)
· h

2
,

for a �xed step size h.

Proof. The goal here is to use Ito's lemma in such a way that we transform the SDE into

dYt = A (t,Xt) dt+ dWt,

so that we don't have to approximate the Ito integral. This is accomplished when Yt = F (Xt)

with Fx = σ (t, x)−1. By Ito's lemma,

dYt =

(
µ (t,Xt)

σ (t,Xt)
− 1

2
σx (t,Xt)

)
dt+ dWt,

Using a Taylor series expansion

dXt = F−1 (Yt + dYt)− F−1 (Yt)

= σ (t,Xt) dYt +
1

2
σx (t,Xt)σ (t,Xt) (dYt)

2 + o
[
(dYt)

2] ,
and so

dXt =

[
µ (t,Xt)−

1

2
σx (t,Xt)σ (t,Xt)

]
dt+ σ (t,Xt) dWt

+
1

2
σx (t,Xt)σ (t,Xt) (dYt)

2 .

Since (dYt)
2 = (dWt)

2 = dt, we get our original SDE back. If we take an Euler approximation

at this point, replacing dWt with
√
h ·Z, we get Milstein's method. Alternatively, if we take an

Euler approximation of only the �rst order terms, we get the Stratanovich-Euler scheme. �

Kloedon and Platen have shown that

E
[∥∥Xt −Xh

t

∥∥2
]
≤ Ch2,

which is of higher order than Euler's scheme. However, while the stochastic aspect is better

approximated, the deterministic term is still problematic. It would be nice if we could take all

of the already established and powerful methods from numerical ODE theory and apply them

to solving SDEs. Enter Wong and Zakai, who proved the following result:

Theorem (The Wong-Zakai Theorem). Let (Ω, E ,P) be a probability space and suppose

that:

(1) µ, σ, σx, σt are continuous for x ∈ R and t ∈ [a, b].

(2) µ, σ and σx are Lipschitz continuous with Lipschitz constant k > 0.

(3) |σ (x, t)| ≥ β > 0 for some β > 0 and |σt (x, t)| ≤ kσ2 (x, t).

Let {wn (t)}∞n=1 be a sequence of regular approximates to a Wiener process Wt satisfying (for

ω ∈ Ω):

(4) For each n, wn (t, ω) has bounded variation, is continuous and piecewise di�erentiable

in t.
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(5) There exists some random variables n0, k such that wn (t, ω) ≤ k (ω) for almost every

ω ∈ Ω and all t ∈ [a, b] when n > n0 (ω).

(6) wn (t) converges to Wt almost surely.

If for each n ∈ N, xn (t) is the solution to the ordinary di�erential equation

dxn
dt

= µ (t, xn)− 1

2
σ (t, xn)σx (t, xn) + σ (t, xn) · dwn

dt

xn (a) = xa

on [a, b], then xn (t) converges almost surely for t ∈ [a, b] to a stochastic process Xt satisfying

the stochastic di�erential equation

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt

Xa = xa

as n→∞.

Theorem (The Wong-Zakai Theorem (Abridged)). Let µ, σ ∈ C1 be su�ciently regular

and let {wn (t)}∞n=1 be a sequence of bounded, continuous and piecewise di�erentiable approx-

imations which converge uniformly almost surely to a Wiener process Wt. If for each n ∈ N,
xn (t) is the solution to the ODE

dxn
dt

= µ (t, xn)− 1

2
σ (t, xn)σx (t, xn) + σ (t, xn) · dwn

dt

xn (a) = xa

almost everywhere on [a, b], then xn (t) converges almost surely uniformly in t ∈ [a, b] to a

stochastic process Xt satisfying the SDE

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt

Xa = xa

as n→∞.

The proof is actually not very di�cult, but we don't have enough time to prove the full result.

Instead, we will show a similar (simpler) result, which should hopefully demonstrate why the

Stratonivich term is necessary a la the Milstein method.

Theorem (Approximating the Ito Integral). Let σ (t, x) ∈ L1 be continuous and dif-

ferentiable in x and let {wn (t)}∞n=1 be a sequence of regular approximations which converges

almost surely to a Wiener process Wt. Then, almost surely

lim
n→∞

∫ b

a

σ (t, wn (t)) dwn (t) =
1

2

∫ b

a

σx (t,Wt) dt+

∫ b

a

σ (t,Wt) dWt.

Proof. Let F (t, x) =
∫ x

a
σ (t, s) ds and observe that by chain rule and FTC

d

dt
F (t, x (t)) = Ft (t, x (t)) + x′ (t)Fx (t, x (t))

= Ft + σx′,
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and so (for dwn (t) = w′n (t) dt)

F (b, wn (b))− F (a, wn (a)) =

∫ b

a

σ (t, wn (t)) dwn (t) +

∫ b

a

Ft (t, wn (t)) dt.

From almost sure convergence of wn to W it follows that

lim
n→∞

∫ b

a

σ (t, wn (t)) dwn (t) = F (b,Wb)− F (a,Wa)−
∫ b

a

Ft (t,Wt) dt,

almost surely. But from Ito's lemma

F (b,Wb)− F (a,Wa) =

∫ b

a

[
Ft (t,Wt) +

1

2
σx (t,Wt)

]
dt+

∫ b

a

σ (t,Wt) dWt.

�

The trick for the SDE form is similar, although it is more involved (since convergence in the

solutions requires a variation of the Gronwall inequality). In that case, we use F (t, x) =∫ x

a
σ (t, s)−1 ds and equate coe�cients between chain rule and Ito's lemma, just like in the

Milstein method proof. It is worth noting that the Wong-Zakai theorem is equivalent to Ito's

lemma under these regularity conditions, in the sense that one can be proved from the other.

It can be veri�ed that the coe�cients for geometric Brownian motion satisfy these conditions.

The natural choice for wn is a linear spline between points generated by Algorithm 5.15 in the

Handbook of Monte Carlo Methods:

Algorithm 1 Generating the Wiener process

(1) Let 0 = t0 < t1 < t2 < · · · < tn be the set of distinct times for which simulation of the
process is desired.

(2) Generate Z1, . . . , Zn
iid∼ N (0, 1) and output:

Wtk = Wtk−1
+
√
tk − tk−1 · Zk

for k = 1, . . . , n (there's a typo in the Handbook here by the way;
√
tk − tk−1 should be√

ti − ti−1 instead).

The ODE solver would then run on the points t0, t1, . . . , tn−1 with

dwn

dt
(ti) =

Zi√
ti+1 − ti

,

where Zi
iid∼ N (0, 1). It is worth noting that Wong and Zakai stated in their original paper that

this result holds for weaker conditions if wn are polygonal approximations to Wt (like linear

splines), so this seems to be the ideal choice. Additionally, the proof of the Wong-Zakai theorem

seems to imply that the solution xn (t) to the ODE is exact at points t0, . . . , tn if wn is exact

at points t0, . . . , tn. This leads to the following algorithm:

These ideas have been used in conjunction with the �fth and eighth-order Dormand Prince

methods to develop the MATLAB functions sde45 and sde853. We can estimate the error in

the processes by computing
∥∥Xt −Xh

t

∥∥
L2([0,T ]×Ω)

which is given by

∥∥Xt −Xh
t

∥∥2

L2([0,T ]×Ω)
= E

[∫ T

0

(
Xt −Xh

t

)2
dt

] 1
2

≈ E

[
T

n

n∑
i=1

(
Xti −Xh

ti

)2

]
.
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Algorithm 2 Solving SDEs using a Runge-Kutta method

(1) Initialise i = 1, t0, x0 and Brownian motion W on {t0, . . . , tn}.
(2) Let hi = ti − ti−1 and Zi = Wi −Wi−1.
(3) Compute the intermediary coe�cients:

xi,j = xi−1 +

j−1∑
l=1

aj,lki,l

ti,j = ti−1 + hi · cj

ki,j = hi

[
µ (ti,j, xi,j)−

1

2
σ (ti,j, xi,j)σx (ti,j, xi,j)

]
+ Ziσ (ti,j, xi,j)

(4) Compute the next step:

xi = xi−1 +
∑
j

bjki,j

(5) If i = n, return x. Otherwise, set i = i+ 1 and repeat from (2).

Table 1. Tests for geometric Brownian motion dXt = 2Xtdt + 1
2
XtdWt on t ∈

[0, 6] with 100 sample paths

N
Euler Milstein Heun

ε Time (s) ε Time (s) ε Time (s)

22 10026.5 1× 10−5 10026.4 1× 10−5 9965.57 1× 10−5

24 7343.74 1.5× 10−5 7342.71 1.5× 10−5 5322.06 2× 10−5

26 4064.33 5.8× 10−5 4019.45 6.8× 10−5 1079.07 7.8× 10−5

28 1647.39 2.3× 10−4 1614.31 2.7× 10−4 242.06 3.1× 10−4

210 402.835 8.9× 10−4 374.298 1.07× 10−3 44.392 1.3× 10−3

N
sde45 sde853 sde853-Euler

ε Time (s) ε Time (s) ε-to-t ratio

22 3828.48 2.7× 10−4 237.87 4.1× 10−4 1.028

24 1.296 9× 10−4 0.019 1.5× 10−3 1.28× 104

26 0.094 3.9× 10−3 8.33× 10−6 6.4× 10−3 5.34× 107

28 2.464× 10−3 0.015 9.31× 10−9 0.025 8.49× 108

210 7.764× 10−5 0.06 1.76× 10−11 0.10 7.78× 1011

The ε-to-t ratio is given by
εEuler
εsde853

· tEuler
tsde853

for which bigger is better.
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Alternatively, if we want to use adaptive methods (like ode45), we need wn to be smooth. The

Karhunen-Loeve theorem says that the best (in terms of mean square error) smooth approxi-

mation of Wt for t ∈ [0, b] with only n terms on an orthonormal basis is

wn (t) =
n∑

k=1

Zk ·
2
√

2b

(2k − 1) π
· sin

(
(2k − 1) πt

2b

)
with Zk

iid∼ N (0, 1), which has derivative

w′n (t) =
n∑

k=1

Zk ·
√

2

b
· cos

(
(2k − 1) πt

2b

)
.

The following picture demonstrates the error in some of the methods for the GBM problem

with N = 26.
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