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It is often encountered (e.g. in �nance and ecology) that one wishes to give mathematical meaning to the ex-
pression

dZ = YdX ,

where X ,Y ,Z are stochastic processes, or, in other words, changes in the stochastic process Z are related to
the changes in the stochastic process X , weighted by a stochastic process Y . For example, dV = NdS for N

the number of units placed in stock and S the stock price. We give meaning to these expressions by their
corresponding integral

Zt = Z0 +

∫ t

0
YdX

which leaves us with the task of constructing what this integral actually is, and when it is valid.

The traditional Lebesgue-Stieltjes integral, is formed from the Riemann-Stieltjes integral∫ b

a
YdX = lim

δ→0

n∑
k=1

Ytk
(
Xtk − Xtk−1

)
, δ = max

k
{tk − tk−1} , a = t0 < t1 < · · · < tn = b

and extended by the standard Caratheodory approach (or Riesz). When naively extending the ideas of integration
to stochastic processes, you will immediately notice a big problem. The Lebesgue-Stieltjes construction only
works if there exists an M > 0 such that

lim
δ→0

n∑
k=1

��Xtk − Xtk−1

�� = ∫
|dX | < +∞,

in other words, if X has bounded variation. Most stochastic processes of interest (e.g. Brownian motion) do not
satisfy this property.

The Traditional Ito Integral. An alternative by Ito, and generalised by Meyer, Kunita and Watanabe allows
for the integration of processes with respect to a martingale Mt by an essential property of local martingales.

De�nition. A real-valued process M is a local martingale if there exists a sequence of almost surely divergent
increasing stopping times {τk }∞k=1 such that Mmin{t,τk } is a martingale for every k .

Remark. A local martingale di�ers from a martingale in thatE [|Mt |] < ∞ is not guaranteed to hold. For instance,
there is a discontinuity in the way that the process is de�ned, which is circumvented by clever choice of stopping
times. A local martingale is a martingale if and only if E

[
supk

��Mmin{t,τk }
��] < ∞.

Theorem (Meyer). For any local martingale Mt on a �ltered probability space (Ω, E,P,Ft ), there is a unique

increasing process [M]t (called the quadratic variation) of (locally, i.e. on compact intervals) bounded variation

which satis�es

E
[
(Mt −Ms )

2��Fs ] = E [ [M]t − [M]s | Fs ] .
Basically,M2 − [M]t is a martingale.

For example, the quadratic variation process of Brownian motion is the identity function (t 7→ t ). The above
result says that we can de�ne the integral under the Riemann-Stieltjes approach (on compact intervals [0,T ]),
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but by taking limits in L2 instead, that is
∫ T
0 YdX is the random variable for which

var

[
n∑

k=1
Ytk

(
Xtk − Xtk−1

)
−

∫ T

0
YdX

]
→ 0, as δ → 0,

and this variable actually exists. This provides our well-de�ned integral, called the Ito integral. The above
theorem now becomes the Ito isometry:

E

[(∫ t

0
YdM

)2]
= E

[∫ t

0
Y 2d [M]

]
.

This idea only works for local martingales (with [M] integrable) though. So how do we generalise to more
general stochastic processes? We jam Ito integration and Lebesgue-Stieltjes integration together of course!

De�nition. A cadlag real-valued process X is a semimartingale if it is the sum of a local martingale M and
a cadlag process A of locally bounded variation, that is, Xt = Mt + At . Basically, the bad ‘randomness’ is
encapsulated inside a martingale. Integrating a semimartingale is easy because it is simply∫

YdX =

∫
YdM +

∫
YdA

where
∫
YdM is understood in the Ito sense and

∫
YdA is a Lebesgue-Stieltjes integral. There are results that

show that this integral is well-de�ned and independent of the decomposition.

Yes, seriously. This is how it’s done. Ugly!

Constructing an Elegant General Integration Theory. This seems to be a haphazard construction of the
stochastic integral. So can we improve it? Can we develop a completely new theory from the ground up which
does better than this? Hehehe (no).

How do we de�ne an e�ective integration theory for stochastic processes? All integration theory starts from
so-called elementary functions, because we understand how these should be integrated. In our case, these are
step processes with known transition times. In other words, any elementary process ξ is of the form

ξt = Z0 · 1{t=t0 } +

n∑
k=1

Zk · 1{tk−1<t ≤tk }

where t0 < t1 < · · · < tn are deterministic times in R and Z0,Z1, . . . ,Zn are random variables. Notice these
processes are left-continuous, so if we know what the process is up to time t , we know what the process is at
time t as well. Such a process is called a predictable process.

Our de�nition of the integral must coincide with the following: for any elementary process ξ de�ned as above:∫
ξdX = Z0X0 +

n∑
k=1

Zk
(
Xtk − Xtk−1

)
,

and similarly, ∫ b

a
ξdX =

∫
ξ · 1(a,b]dX .

We choose elementary processes as our basis of the integral because predictable processes are limits of elemen-
tary processes. Thus, we only now need a method of dealing with limits to complete the theory. A predictable
process will be integrable if the limit of the integrals of an approximating sequence of elementary processes is a
valid stochastic process.
What we do not want to happen is to able to develop a partitioning scheme of the interval [0,T ] in such a way
that the integral can be made arbitrarily large with constant non-zero probability. This circumstance would
completely break our original interpretation of the meaning behind the integral.
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Equivalently, for any arbitrary value M > 0, we do not want to be able to choose a sequence of elementary
processes which converge uniformly (completely) to zero, yet the integrals of every one of these elementary
processes is greater than M with constant non-zero probability.

De�nition. A real-valued cadlag process X is a valid integrator if for any T > 0, the set{∫ T

0
ξdX : ξ is elementary and |ξ | ≤ 1

}
is bounded in probability.

This ensures that for an absolutely bounded integrand, larger integrals occur with diminishing probability.
Equivalently, a real-valued cadlag processX is a valid integrator if for anyT > 0 and any sequence of elementary
processes {ξn}∞n=1 with supt ∈[0,T ] |ξn | → 0,

∫ T
0 ξndX

P
→ 0.

Exercise. It is easy to verify using the Markov inequality that this holds for Ito and Lebesgue-Stieltjes integrals.
For any η > 0, with |ξ | ≤ δ and δ → 0,

Pr
(����∫ T

0
ξdA

���� > η) ≤ δ

η
E

[����∫ T

0
ξdA

����] ≤ δ

η
E

[∫ T

0
|dA|

]
→ 0, and

Pr
(����∫ T

0
ξdM

���� > η) ≤ 1
η2
E

[(∫ T

0
ξdM

)2]
=

1
η2
E

[∫ T

0
ξ 2d [M]

]
≤
δ 2

η2
E

[∫ T

0
d [M]

]
→ 0.

Theorem (Bichteler-Dellacherie Theorem). LetX be a real-valued cadlag process. The following conditions are

equivalent:

(1) X is a valid integrator.

(2) The integral

∫
YdX satis�es the Dominated Convergence Theorem, that is, for any sequence of predictable

processes {Yn}
∞
n=1 which converge uniformly in probability to some limitY and are bounded by an integrable

predictable process, there is ∫
YndX

P
→

∫
YdX .

Similarly, variants of the Monotone Convergence Theorem and Fatou’s Lemma also hold. These form the

basis of the theory of Lebesgue integration, and so that theory (which has proven e�ective in practice) may

be transposed here.

(3) The integral

∫
YdX may be constructed pathwise in the following manner. Consider Algorithm 1 shown

below:

Algorithm 1 Computing the stochastic integral
∫
Y−dX

Given sample paths y (t) = Y (t ,ω) and x (t) = X (t ,ω) for t ∈ [0,T ], the following produces an approximation

of the sample path I (t) ≈
(∫

Y−dX
)
(t ,ω) for t ∈ [0,T ]. Let n be a chosen resolution.

(a) Let τ0 = 0 and �nd a selection of points τ1,τ2, . . . ,τn such that
��Xt − Xτi

�� ≤ 2−n for τi ≤ t < τi+1 for each

i = 1, . . . ,n. This can be accomplished by simply searching for the next point in the sample path which

does not satisfy this inequality.

(b) For any t ∈ [0,T ], let J = max {i : τi ≤ t} and de�ne

I (t) = x (0)y (0) + y
(
τ J

) [
x (t) − x

(
τ J

) ]
+

J−1∑
i=0

y (τi ) [x (τi+1) − x (τi )] .
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Let In be the stochastic process produced pathwise via Algorithm 1 from cadlag processes X and Y . Then

there is a process

∫ t
0 Y−dX such that

sup
t ∈[0,T ]

����In (t) − ∫ t

0
Y−dX

���� a.s.

→ 0 as n →∞.

As a corollary of this fact, the integral is uniquely de�ned up to sets of measure zero.

(4) X is a semimartingale, that is, there is a local martingale M and a process of bounded variation A such

that Xt = Mt + At and
∫
YdX =

∫
YdM +

∫
YdA for any process Y where all integrals (the Ito integral∫

YdM and Lebesgue-Stieltjes integral

∫
YdA) are de�ned. In other words, semimartingales are the only

valid integrators.

I remark that the integral is only de�ned for predictable integrands. The last result demonstrates that the semi-
martingale approach is actually the best we can do. Thankfully, many processes happen to be semimartingales.

Example. The solution to a stochastic di�erential equation is a semimartingale. If dXt = µ (t)dt + σ (t)dWt

then
Xt = Mt +At , Mt = X0 +

∫ t

0
σ (s)dWs , At =

∫ t

0
µ (t)dt .

Mt is a martingale here because the Ito integral forms a martingale. At has bounded variation because it is
di�erentiable almost everywhere!

• Submartingales are semimartingales by the Doob-Meyer decomposition theorem.
• Every Levy process is a semimartingale (consequence of decomposition of Levy processes).
• Not every Gaussian process (e.g. fractional Brownian motion) is a semimartingale.
• As a consequence of Courrege’s theorem, every Feller process with bounded state space and generator

acting over all C∞c is a semimartingale.

Ito’s Lemma. One fantastic corollary of the Bichteler-Dellacherie theorem is that we know that Ito’s lemma, a
very useful chain rule for stochastic integration, holds. Bichteler develops his own proof of the lemma without
relying on semimartingale theory, but it is admittedly much more complicated. Clearly, chain rule holds for∫
YdA, and Kunita and Watanabe constructed Ito’s lemma for

∫
YdM . For continuous one-dimensional semi-

martingales, it is given by

f (Xt ) = f (X0) +

∫ t

0
f ′ (Xs )dXs +

1
2

∫ t

0
f ′′ (Xs )d [X ]s

d f (Xt ) = f ′ (Xs )dXs +
1
2
f ′′ (Xs )d [X ]s

where [X ]s is the quadratic variation of X , simply given by [M]s (quadratic variation of the martingale part),
since A has zero quadratic variation. For discontinuous semimartingales, Xs is replaced with a left-continuous
version and there’s an extra annoying jump correction term, which is the same expression with ∆ and

∑
instead

of d and
∫

.

As a corollary of Ito’s lemma (try 1
2 f
′′ (x) = 1 so 1

2

∫ t
0 f ′′ (Xs )d [X ]s = [X ]t ), the quadratic variation can be

given by:

[X ]t = X 2
t − X

2
0 − 2

∫ t

0
X−dX

and the integral here can be computed via Algorithm 1. Simplifying the expressions in this algorithm yields a
very simple procedure for computing the quadratic variation. This is a good exercise. Using the same notation,
there is,

Q (t) = x (t)2 − x (0)2 − 2I (t) =
[
x (t) − x

(
τ J

) ]2
+

J−1∑
i=1
[x (τi+1) − x (τi )]

2 .
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The use of Ito’s lemma will involve the computation of the quadratic variation process as well. In fact, the
existence of quadratic variation is one of the key applications of stochastic integration in my own work, as it
has many incredibly useful properties, like martingales.

Stratanovich Integral. Similarly, to construct an integration by parts theory, we can de�ne the covariance
process between two semimartingales X and Y by

[X ,Y ]t = XtYt − X0Y0 −

∫ t

0
X−dY −

∫ t

0
Y−dX

and form the Stratanovich integral by ∫ t

0
Y ◦ dX =

∫ t

0
YdX +

1
2
[X ,Y ]t

so that
XtYt = X0Y0 +

∫ t

0
X− ◦ dY +

∫ t

0
Y− ◦ dX

and the Stratanovich integral forms a �rst-order integral algebra.

Intro to Rough Paths. There is one major problem with the theory as it has been stated. The pathwise integral
construction in Algorithm 1 is not continuous with respect to Xt under any Polish topology. This is a problem,
as it implies that we cannot guarantee that we can make closer and closer approximations to the integral by an
arbitrary sequence of approximating processes to Xt .
To remedy this, consider the following: Kallenberg Theorem 26.8 states that the solution to the stochastic dif-
ferential equation dYt = YtdXt , Y0 = 1 for a continuous semimartingale with X0 = 1 is given by

Yt = exp
(
Xt −

1
2
[X ]t

)
.

This is not continuous with respect to Xt , because the quadratic variation map is not continuous with respect
to X under traditional topologies. Removing the quadratic variation from the equation, however, the solution
is now continuous with respect to Xt . This implies that the Stratanovich integral yields a continuous solution
map in many circumstances: this is the Wong-Zakai theorem. Thus, we need to choose an integration form that
gives us the best chance of �nding a continuous map. The solution to this is the theory of rough paths. It turns
out that for many processes (and suggested by Ito’s lemma), by treating the quadratic variation as an algebraic
object, solution maps to stochastic di�erential equations are much easier to �nd, and are usually nice. The evil
has been relegated to the construction of the quadratic variation, which is a much simpler object to study.

Problem. For any continuous semimartingaleXt , what is the solution to the general linear SDEdYt = (µtYt + αt )dt+
(σtYt + βt )dXt ?


