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In a previous discussion, I covered the construction of the general stochastic integral according to the

Bichteler-Dellacherie theorem via semimartingales. While this theory is quite elegant in its current state,

it is generally incompatible with the more usual analysis techniques often seen in other forms of calculus.

The di�erences between the Ito and Stratonovich stochastic calculus formulations are particularly distress-

ing in this regard. Furthermore, there is no proper understanding of how SDEs might be treated pathwise.

But the biggest issues arise when one wishes to study notions of regularity for solutions to stochastic dif-

ferential equations, and these problems become insurmountable when we try to extend stochastic calculus

to studying stochastic partial di�erential equations (SPDEs), yielding a disjointed and unnatural theory as

a result.

To show why the traditional theory of SDEs is insu�cient, we will compare it with well-established theory

of ordinary di�erential equations (ODEs). Before that, I will state the following de�nition, which will prove

to be critical to the discussion. For simplicity, I limit myself to the one-dimensional case.

De�nition. For α ∈ (0, 1], a function f is said to be α-Holder continuous if there is some constant C > 0

such that | f (x) − f (y)| ≤ C |x − y |α for all x ,y. A function which is 1-Holder is said to be Lipschitz

continuous. For α ∈ (0, 1), we let Cα denote the class of α-Holder continuous functions, and assign to this

space the α-Holder norm ‖ f ‖α , de�ned as

‖ f ‖α = sup

x,y

| f (x) − f (y)|

|x − y |α
.

Fact. (Interesting): Only constants are α-Holder for α > 1.

Holder continuity is a critically important form of regularity of functions, implying not only uniform

continuity, but a kind of rate of convergence on this as well. Consider an ordinary di�erential equation

for a function y which is driven by a function д. Such an ODE is of the form

dy = f (y)dд (or equivalently, y ′ (x) = f (y)д′ (x) ),
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which has the obvious comparison to dY = f (Y )dX in stochastic calculus. Suppose that we would like

to show existence/uniqueness of a solution to this equation as an initial value problem on [0,T ]. By the

Picard-Lindelof theorem, if f is Lipschitz continuous, then a solution to this ODE exists locally (for some

[0, ϵ], ϵ < T ). Additionally, suppose that дϵ is some approximation to д of order ϵ (so дϵ → д as ϵ goes to

zero) and we were only able to solve dyϵ = f (yϵ )dдϵ instead. Again, solutions exist locally. But also, by

Gronwall’s inequality, there is a constant M such that

‖y − yϵ ‖∞ ≤ M ‖ f ‖∞
д′ − д′ϵ∞ .

Thus, ifдϵ is close toд, it follows thatyϵ is close toy. This form of continuity of the solution map is essential

in both numerical and analytical contexts — in particular, it is important for demonstrating algorithmic

e�ciency if one wishes to actually solve these equations in practice. The standard theory of stochastic

calculus does not have a result of this form. The closest thing is the Wong-Zakai theorem, but this only

applies in the Stratonovich formulation.

Questions of regularity also apply to stochastic di�erential equations, but are di�cult to answer in the

theory. A founding motivation for the theory of rough paths is a well-known result by Kolmogorov.

Theorem (Kolmogorov Continuity Theorem). Let X be a stochastic process such that

E [|Xt − Xs |
α ] ≤ |t − s |1+β

for some α , β > 0 for every s, t > 0. Then X is almost surely γ -Holder continuous for every 0 < γ <
β
α .

In particular, we �nd that sample paths of Brownian motion are almost surely

(
1

2
− ϵ

)
-Holder continuous

for small ϵ > 0. So to construct some pathwise notion of stochastic integration (at least, in one dimension,

for now), we can consider the problem of integrating an α-Holder continuous function with respect to a

β-Holder continuous function.

Theorem. For any two functions X ,Y , the Young integral constructed by∫
YdX = lim

|P |→0

∑
[s,t ]∈P

YsXs,t

where Xs,t = Xt − Xs converges if X and Y are α- and β-Holder continuous and α + β > 1.

Proof. Young’s inequality gives

���∫ t
s YdX − Ys (Xt − Xs )

��� ≤ C |t − s |α+β where C is independent of s, t . �
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If Y is su�ciently regular (e.g. absolutely continuous), then the integral with respect to Brownian motion

exists. This is the Paley-Wiener integral. However, we cannot take the integral

∫
WtdWt , or indeed, even∫

f (Wt )dWt . The reason, as Terry Lyons — the founder of rough path theory — discovered, is because the

limit for the Young integral relies on the assumption that for s, r very close, F (Xr ) ≈ F (Xs ). This can be

thought of as a zeroth-order approximation to F (Xr ). If we take a �rst-order approximation instead, we

would get

F (Xr ) ≈ F (Xs ) + F
′ (Xs ) (Xr − Xs )

and our integral becomes∫
F (X )dX = lim

|P |→0

∑
[s,t ]∈P

[F (Xs )Xt + F
′ (Xs ) (Xt − Xs )Xt − F (Xs )Xs ]

= lim

|P |→0

∑
[s,t ]∈P

[
F (Xs ) (Xt − Xs ) + F

′ (Xs )Xs,tXt
]

so if we already knew Xs,t =
∫ t
s Xs,tdXt , then we would expect that∫

F (X )dX = lim

|P |→0

∑
[s,t ]∈P

[
F (Xs ) (Xt − Xs ) + F

′ (Xs )Xs,t
]

would be the ‘better’ integral, and indeed, this integral converges under weaker conditions.

De�nition. For α ∈ ( 1
3
, 1
2
], an α-Holder rough path is a pair (X ,X) where X : [0,T ] → R and X :

[0,T ]2 → R satisfying the following conditions:

(1) X is α-Holder continuous

(2) X is 2α-Holder continuous in the sense that

��Xs,t �� ≤ C |t − s |2α for some C .

(3) For every triple of times (s, t ,u), Xs,t − Xs,u − Xu,t = (Xu − Xs ) (Xt − Xu ) (Chen’s relations).

This last condition is highly algebraic in nature, and comes from the theory of Lie groups. It can be veri�ed

that any traditional choice of iterated integral for Xs,t will formally satisfy this condition. Without giving

too much away, I’d like to point out that the restriction to α > 1

3
is signi�cant; an analogous theory

holds for smaller α , requiring higher-order ‘approximations’ and iterated integrals. I won’t be considering

these cases, however, as I’m primarily interested in looking at Brownian motion as a rough path, which is

certainly α-Holder for α ∈ ( 1
3
, 1
2
).

A natural question at this stage is whether any α-Holder function can be lifted to a rough path (although

this process may not be unique). The answer to this is a�rmative.
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Theorem (Lyons-Victoir Extension Theorem). For α ∈ ( 1
3
, 1
2
) and any α-Holder function X , there is a

function X : [0,T ]2 → R such that (X ,X) is an α-Holder rough path X.

Proof. In the full multidimensional setting, this is insanely non-trivial. Fortunately, it is easy in the single-

dimensional case — we simply choose

Xs,t = Xt (Xt − Xs ) .

�

It can actually be shown that this particular choice always gives a �rst-order calculus, like the Stratonovich

stochastic calculus. Rough paths that exhibit a �rst-order calculus are called geometric, and are notable as

they can be uniformly approximated by smooth paths (e.g. Wong-Zakai theorem).

Now for the key result:

Theorem. For any α-Holder rough path with α > 1

3
and any di�erentiable F , the rough path integral exists:∫ T

0

F (X )dX = lim

|P |→0

∑
[s,t ]∈P

[
F (Xs ) (Xt − Xs ) + F

′ (Xs )Xs,t
]
.

If we want to integrate with respect to a more general function than just a function of X , we need to have

a derivative term. The most general class we can integrate over are controlled rough paths: functions Y

with some operator Y ′ such that

Ys,t = Y
′
sXs,t +O

(
|t − s |2α

)
.

Now, the rough path integral becomes∫ T

0

YdX = lim

|P |→0

∑
[s,t ]∈P

[
Ys (Xt − Xs ) + Y

′
sXs,t

]
,

which is now well-de�ned.

Let’s think a little bit more about why this extra term is important. Perhaps the best way is to recall that

the Ito and Stratanovich integrals are di�erent: the Xs,t term is providing the extra information necessary
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to distinguish between these two integrals. For example, if we choose

Ws,t =

∫ t

s
Ws,t ◦ dWt

=

(∫ t

s
Wt ◦ dWt

)
−Ws (Wt −Ws )

=Wt (Wt −Ws ) ,

then the integral

∫
F (W )dW corresponds exactly to the Stratanovich integral. Alternatively if

Ws,t =

∫ t

s
Ws,tdWt

=

(∫ t

s
WtdWt

)
−Ws (Wt −Ws )

=Wt (Wt −Ws ) − (t − s)

then the integral

∫
F (W )dW corresponds exactly to the Ito integral. For both of these, (W ,W) is a

(
1

2
− ϵ

)
-

Holder rough path. What is cool is thatWs,t uniquely determines the integral.

In general, we have in�nitely many di�erent constructions of the rough path integral, depending on how

we choose Xs,t . In this way, the rough path integral can be seen as more general than the stochastic

integral (semimartingales). However, since we are restricted to Holder-continuous processes, which are all

continuous, it is also somewhat less general than the stochastic integral which allows for jumps (although,

we can always deal with this by decomposing the integral into the continuous and discontinuous parts

anyway). Personally, I like to think of the theory of rough paths and the usual stochastic calculus as

di�erent formulations which complement each other quite nicely. The former has nice ties to functional

analysis, while the latter is more familiar in modern probability theory.

Assorted Results

• Ito’s formula still holds, where [X ]t is derived from an algebraic relation from X and X, however,

it requires that f ∈ C3

b not just f ∈ C2

b .

• A priori estimates: For any solution Yt to the rough di�erential equation (RDE):

Yt = Y0 +

∫ t

0

f (Yt )dXt ,

where f ∈ C2

b and (X ,X) is an α-Holder rough path, Yt is α-Holder continuous, and a Holder

constant (a choice of C) is explicitly known.
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• Existence and uniqueness: The solution to the above RDE exists and is unique locally. We get this

from standard contraction mapping arguments! Additionally, if f ∈ C3

b then the solution exists

and is unique globally.

The space of α-Holder functions forms a Banach space under a particular norm. By exten-

sion, the space of α-Holder rough paths also forms a complete metric space. This allows

for many of the essential results in functional analysis to carry over into analysis of SDEs!

• Continuity for approximations: there is

‖Y − Y ϵ ‖α ≤ CM

(��Y0 − Y ϵ0 �� + Xs,t − X
ϵ
s,t


α +

Xs,t − Xϵs,t 2α ) .
Results such as this immediately allow for one to explicitly provide convergence rates for numerical

algorithms to solve RDEs (and SDEs too!). The Wong-Zakai theorem is a corollary of this.

• Integration with respect to non-semimartingales, e.g. fractional Brownian motion. You just need

to be careful about the class of processes you are integrating over.

• Explicit solutions to linear SPDEs: since the theory is entirely deterministic, an extension of Feynman-

Kac gives an explicit formula for solutions to linear SPDEs, which is perfect for Monte-Carlo esti-

mation.

• Adaptation of traditional PDE theory to simple nonlinear SPDEs

• The theory of regularity structures is a (Fields medal winning) extension of the theory of rough

paths into a powerful toolbox for analysing stochastic partial di�erential equations.

• For more results, check out the text “A Course on Rough Paths” by Friz and Hairer.


