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Objective: Suppose that p is a target density with an unknown normalising constant (e.g. posterior,

model). Determine the degree to which a sample X1, . . . , Xn represents p, that is, how close is the

approximation

1

n

n∑
i=1

f (Xi) ≈ Epf (X) =

∫
f (x) p (x) dx.

Can anyone think of a way (outside of what I'm going to talk about) to do this? I would expect not.

This is perhaps one of the biggest problems facing computational statisticians.

• What about kernel density estimation? Take a KDE of the points and compare the resulting

density with π. Problem: π is unnormalised, so we have no means to compare them.

The existing forms of comparing distributions, for example, Kullback-Leibler divergence:

dKL (µ|π) =
∫
µ (x) log

(
µ (x)

π (x)

)
dx,

are not computable. The kernelised Stein discrepancy is inspired by an incredibly powerful technique

from analytical probability known as Stein's method. In our situation, the method builds upon the

following fact: let sp denote the score function

sp (x) = ∇ log p (x) ,

Observe that sp can be computed without knowledge of the normalising constant. Indeed, if π (x) =

cp (x), then

sπ (x) = ∇ [log c+ log p (x)] = ∇ log p (x) = sp (x) .

If f : Rd → Rd is any (di�erentiable) function, then

Ep [∇ · f (X) + sp (X) · f (X)] = 0.

This is simply integration by parts. Expanding it out gives

d∑
i=1

∫
p (x)

∂

∂xi
f (x) + f (x)

∂

∂xi
p (x) dx =

d∑
i=1

∫
∂

∂xi
[f (x) p (x)] dx = 0.

Therefore, by de�ning the Stein discrepancy

S (q|p) = sup
f∈F

(Eq [∇ · f (X) + sp (X) · f (X)])
2
,

we note that S (q|p) = 0 if q = p. Actually, if F is large enough, you can show that S (q|p) = 0 if and only

if q = p, and so S is a valid form of discrepancy. We still cannot compute S however, since it involves a

supremum over a class of test functions. However, if we take F to be the unit ball {h : ‖h‖H ≤ 1} of a
reproducing kernel Hilbert space H with reproducing kernel k, then by de�ning the Stein kernel

kp (x, y) = ∇x · ∇yk (x, y) + sp (x) · ∇yk (x, y) + sq (x) · ∇xk (x, y) + [sp (x) · sp (y)] k (x, y)

there is the kernelised Stein discrepancy

S (q|p) = Ekp (X,Y ) ,
1
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where X and Y are iid random variables from q. Therefore, the Stein discrepancy between (the empirical

distribution of) a sample X1, . . . , Xn and the normalised density p is

S (X1, . . . , Xn|p) =
1

n2

n∑
i,j=1

kp (Xi, Xj) ,

which is easily computable. Gorham and Mackey determined that a good kernel k that ensures the

discrepancy is convergence-determining is the IMQ kernel

k (x, y) =
1√

1 + ‖x− y‖2
.

Even better, the mean squared error for test functions inH is bounded above by this discrepancy. Indeed,

E

∣∣∣∣∣ 1n
n∑
i=1

h (Xi)−
∫
h (x) p (x) dx

∣∣∣∣∣
2

≤ S (X1, . . . , Xn|p) , for any h ∈ H.


