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ABSTRACT. The rate of convergence of an ergodic stochastic process to its stationary distribu-
tion is a valuable and well-studied problem for MCMC and Stein’s method alike. In this talk,
I will discuss the concept of hypercontractivity (essentially exponential convergence in relative
entropy), and the many benefits it entails.

The rate of convergence of an ergodic stochastic process to its stationary distribution is perhaps
one of the most well-studied and valued topics in the theory of stochastic processes. It is a
classical result of Kolmogorov that processes of the form

(1) dXM
t = ∇ log π

(
XM
t

)
dt+ dWM

t ,

where WM
t denotes Brownian motion on the Riemannian manifold M , comprise all time-

reversible diffusion processes with stationary distribution π ∈ C1. These processes are sig-
nificant for many reasons; in particular, I am interested in the use of these diffusion processes
in Markov Chain Monte Carlo, as well as in Stein’s method. In this talk, I will look at the rate
of convergence of this stochastic process in the case that M = Rn (flat Euclidean space). Most
of you would be somewhat familiar (or at least, not surprised by) the following result due to
Gareth Roberts and Richard Tweedie:

Theorem 1 (EXPONENTIAL ERGODICITY). Suppose that π is a light-tailed distribution on
Rn. Denoting by pt (x, y) the transition kernel of Xt, there exist constants C, λ > 0 such that

(2) sup
x

∫
Rn

|pt (x, y)− π (y)| dy ≤ Ce−λt, t ≥ 0,

The measure of discrepancy here is in total variation, which stems from initial studies into the
concept of geometric ergodicity involving discrete state spaces. In these cases, it is a perfectly
adequate and completely natural measure of discrepancy between probability measures. How-
ever, for uncountable state spaces, the total variation norm is well-known to be rather unnatural
to work with. In fact, while the above result on exponential ergodicity is highly regarded in
the MCMC literature, I claim that it is a poor method of measuring rate of convergence. The
biggest problems are obvious: C, λ are unknown, and virtually impossible to estimate in black-
box applications.

Instead, I suggest shifting the discussion to the theory of hypercontractivity. Instead of the total
variation metric as a measure of discrepancy, consider the relative entropy (or KL divergence):

H (µ|ν) =
∫

log

(
∂µ

∂ν

)
dµ, H (p|q) =

∫
Rn

p (x) log

(
p (x)

q (x)

)
dx,
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and diffusions which satisfy

H (Xt|π) ≤ H (X0|π) e−λt, t ≥ 0.

Although a surprisingly non-trivial fact, this is stronger than exponential ergodicity, that is, ex-
ponential convergence in relative entropy implies exponential ergodicity. However, as a func-
tional concept, this provides us with relatively little information. Instead, I shall introduce an
entropy operator corresponding to the Markov process. Recall that the transition semigroup of
the Markov process is defined by

Ptf (x) = E [f (Xt) |X0 = x] , t ≥ 0.

We now define Ht for t ≥ 0 by

Htf = Eπ [Ptf · logPtf ]− (Eπf) log (Eπf) , f ∈ C0 (Rn) ,

where Eπf =
∫
Rn f (x)π (x) dx. Observe that if p0 is the density of X0, then Ht (p0/π) =

H (Xt|π), so if these entropy operators diminish exponentially in time, we obtain our desired
exponential convergence in relative entropy. This is precisely what hypercontractivity is.

Definition 2. A stochastic process Xt is said to be hypercontractive if Htf ≤ e−λtH0f for
some λ, called the hypercontractivity constant.

This definition differs from that seen in most of the literature on the subject, but can be shown
to be equivalent, and I generally find this to be much easier to digest. Indeed, the original
definition of hypercontractivity imposed that

‖Ptf‖Lq(π) ≤ ‖f‖Lp(π) , whenever e−λt ≤ p− 1

q − 1
.

This definition of hypercontractivity comes from Edward Nelson in 1966 in quantum field
theory. Original motivations and work on the concept were intimate with harmonic analysis.
However, it was the revolutionary paper of Leonard Gross in 1975 that really brought the con-
cept to the forefront. Gross proved that Xt is hypercontractive if and only if the stationary
distribution π satisfies∫

Rn

f (x)2 log

(
f (x)2

Eπf 2

)
π (x) dx ≤ 2

λ

∫
Rn

‖∇f (x)‖2 π (x) dx,

called a logarithmic Sobolev inequality (here, I have written this in integral form to make
the connection to analysis clearer). At this point, the Ornstein-Uhlenbeck process (so π is
the standard Gaussian distribution) was known to be hypercontractive, which led to what is
commonly referred to as THE logarithmic Sobolev inequality. There are a number of important
consequences of this inequality:

• (Probability): Aside from the obvious value in developing general probabilistic esti-
mates involving π, the log-Sobolev inequality implies the Poincare inequality, which
states that

Varπf (X) ≤ 2

λ
Eπ ‖∇f (X)‖2 .
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In many cases, it is significantly easier to compute or estimate expectations of deriva-
tives, than those of the function itself. I have used the estimate of this form for bounded
random variables on numerous occasions throughout my own work.
• (Analysis and PDEs): The origin of the name ‘logarithmic Sobolev inequality’ stem-

s from the fact that it is a dimension-independent generalisation of the fundamental
Sobolev inequalities in PDE theory. In particular, it implies the embedding

W 1,2 ↪→ L2 logL2 (π) .

Therefore, the logarithmic Sobolev inequality is valuable in the study of non-linear
partial differential equations.
• (Geometry): Perhaps the most significant of all of these applications is the work of

Perelman. Yes, THAT Perelman. Fundamental to his proof of the Poincare conjec-
ture is the construction of a W functional which behaves nicely under the Ricci flow.
The functional itself is complicated; however, it is worthwhile to mention that the non-
negativity (which provides an essential lower bound for the functional for convergence
results) ofW is precisely the log-Sobolev inequality. The connections between hyper-
contractivity and geometry go even deeper, but I shall not discuss them here.

Hopefully, it should be clear that hypercontractivity is a highly desirable property for an er-
godic diffusion. But which of these processes are hypercontractive? The following necessary
condition, which stemmed from initial correspondence between Gross and Herbst, provides a
pretty clear picture.

• Necessary: The diffusion Xt is hypercontractive only if π is subgaussian, that is,
EπeαX

2
<∞ for some α > 0.

This is clearly a much stronger condition than light tails (subexponential). But you get more
bang for your buck! More interesting are sufficient conditions, which stick pretty tight to the
necessary condition. In fact, one of the benefits of dealing with hypercontractivity is that it
is relatively straightforward to obtain the hypercontractivity constant λ. There is a two step
process to this. The first is the Bakry-Emery condition:

• Sufficient (Bakry-Emery): The diffusion Xt is hypercontractive if HessV < λI

(HessV − λI is positive-definite) for some λ > 0 where V = − log π is the poten-
tial. In this case, λ is a hypercontractivity constant.

Basically, Xt is hypercontractive if π is a strongly log-concave distribution. We can weaken
this substantially using Holley-Stroock perturbation.

• Sufficient (Holley-Stroock): Suppose that π (x) = q (x) exp (−V0 (x)) where HessV0 <
λ0I and λ−1

1 ≤ q (x) ≤ λ1 for all x ∈ Rn. Then Xt is hypercontractive with hypercon-
tractivity constant λ0/λ1.

The Bakry-Emery condition possesses a rather involved proof, but Holley-Stroock perturbation
is a simple consequence of the Radon-Nikodym theorem. Together, these conditions imply
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hypercontractivity for a large number of subgaussian distributions, and with explicit rates of
convergence too!

Example 3. Let π (x) ∝ e−
1
2
(x+a)2 + e−

1
2
(x−a)2 be a mixture of two standard normal distribu-

tions with modes at −a and a. This distribution is strongly log-concave whenever a < 1, and
so the Bakry-Emery condition applies with

λ = 1− a2.

Remember that for a = 0, λ = 1 which coincides with the Gaussian case. To extend to larger
a, we need to apply Holley-Stroock perturbation. The process is less clear, but by choosing
q (x) = min

{
exp

(
(1 + a)2 x2

)
, (1 + a)2

}
, we can achieve

λ ≤ 2

1 + a
.

I suspect this is about the best you can hope for. Therefore, the mixing times increase propor-
tional to the width between modes. Performing a discretisation with Metropolis correction, this
increase will get much worse.


