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Since its inception, graph theory has become ubiquitous in the study of networks. Not to be
confused with the scientific notion of a graph which has more in common with its topological
definition, graph theorists define a graph as a pair G = (V,E), where V is a vertex set con-
sisting of |V | vertices, and E is the edge set, itself consisting of pairs of vertices in V , and
representing lines (edges) adjoining these vertices. For an undirected graph, the order of this
pair is irrelevant. A graph may also be represented using an adjacency matrix. For example,
the bull graph

can be represented as the adjacency matrix

A =


1

1 1 1

1 1

1 1 1

1

 .

With breakthroughs in modern probability, it became natural to incorporate random elements
into the graph theory framework. A random graph is a probability distribution over a prede-
termined set of graphs. They can have a random number of vertices, but for our purposes, we
shall assume the number of vertices for a particular random graph is fixed, and so a random
graph of size n (n vertices) is simply a probability distribution over n × n binary symmetric
matrices with zero diagonal, or alternatively, over {0, 1}(

n
2).

At the same time, a central objective in probability theory is the development of ‘limit theo-
rems’ demonstrating that under some reasonable transformation (or regularisation/normalisation),
a probabilistic object is well approximated by a much simpler object as one of its characteris-
tics tends to some limit. Examples include the law of large numbers, the central limit theorem
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and Donsker’s theorem (also called the functional central limit theorem). It is desirable to de-
velop some technology that combines these two ideas together. Their intersection is the study
of graphons.

The primary resource for the study of graphons is the marvellous monograph “Large networks
and graph limits” by Laszló Lovasz.

Graphons. LetW be the space of all functions W : [0, 1]2 → R; such functions are referred
to as kernels. Let W0 be the space of all functions W : [0, 1]2 → R such that 0 ≤ W ≤ 1.
Clearly W0 is a closed subset of W . The elements of W0 are called graphons and gener-
alise the standard notion of a graph. Indeed, there is a one-to-one correspondence between
the subclass of stepfunctions and graphs: for any graph G with |V (G)| = n vertices, let
J1, . . . , Jn be a partition of [0, 1], and set WG as the stepfunction defined for x, y ∈ Ji × Jj by
WG (x, y) = 1 {ij ∈ E (G)}. This stepfunction can be conceived as a functional representa-
tion of the adjacency matrix of G, but has the important advantage of remaining on the same
space, regardless of n. Many of the ideas from traditional graph theory generalises to graphons.
For example, we say that graphons U andW are equivalent if there exists an invertible measure
preserving map ϕ : [0, 1] → [0, 1] such that U (ϕ (x) , ϕ (y)) =: Uϕ (x, y) = W (x, y) almost
everywhere (it can be verified that this does indeed define an equivalence relation). This is
analogous to isomorphisms for unlabelled graphs. Similarly, we can define the degree function
dW of a graphon W as the analogue of the proportion of external vertices to which a vertex is
connected:

dW (x) =

∫ 1

0

W (x, y) dy ∼ deg x

n
.

Homomorphism Density. For two simple graphs G and H , an adjacency-preserving map ϕ
from V (G) to V (H) is called a homomorphism (in other words, if ij ∈ E(G) then ϕ(i)ϕ(j) ∈
E(H)). Many important questions in graph theory can be phrased in terms of homomorphisms:
for example if G = 4, the existence of a homomorphism G → H implies the existence of a
triangle in H . Additionally, the existence of Kn → G (for Kn the complete graph of order n)
implies G contains a clique with n nodes, while G → Kn implies that G is n-colorable. The
number of homomorphisms is denoted hom(G,H), given by

hom (G,H) =
∑

ϕ:V (G)→V (H)

∏
uv∈E(G)

1 {ϕ(u)ϕ(v) ∈ E (H)}︸ ︷︷ ︸
ϕ is a homomorphism

,

and the homomorphism density t (G,H) is

t (G,H) =
hom (G,H)

|V (G)||V (F )| .

The density of triangles t (4, H) is roughly the probability that any three vertices chosen in
the graph form a triangular subgraph. The homomorphism density has a surprisingly simple
extension to graphons, given for a simple graph F and graphon W ∈ W0 by
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t (F,W ) =

∫
[0,1]V (F )

∏
ij∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi.

So, for example, the ‘density of triangles’ in a graphon W is given by

t (4,W ) =

∫ 1

0

∫ 1

0

∫ 1

0

W (x, y)W (y, z)W (x, z) dx dy dz,

and similarly, the ‘density of an n-clique’ is

t (Kn,W ) =

∫
[0,1]n

n∏
i<j

W (xi, xj) dx1 · · · dxn.

The Cut Distance. Evidently, graphons intersect functional analysis and graph theory, but we
have still not yet touched on one of the main selling points of graphons: the enabling of limit
theory. For this, a topology is required, which will hopefully imply that t (F,U) → t (F,W )

whenever U → W . As it turns out, none are more suitable than the cut distance.
The cut norm is defined for n× n matrices A by

‖A‖� =
1

n2
max

S,T⊂{1,...,n}

∣∣∣∣∣ ∑
i∈S,j∈T

Aij

∣∣∣∣∣ ,
and analogously, the cut norm is defined for kernels W ∈ W by

‖W‖� = sup
U,V⊆[0,1]

∣∣∣∣∫
U×V

W (x, y) dxdy

∣∣∣∣ .
One interesting feature of the cut metric is that

∫
[0,1]2
|W (x, y)| dxdy = ‖W‖1 ≤

√
2n ‖W‖�.

To incorporate our equivalence class for graphons, we introduce the cut distance δ� (U,W )

between graphons U and W defined by

δ� (U,W ) = inf
ϕ
‖Uϕ −W‖� ≤ ‖U −W‖� .

The counting lemma states that convergence in the cut distance implies convergence in homo-
morphism densities, as desired.

Lemma 1 (COUNTING LEMMA). Let F be a simple graph and let U and W be graphons.
Then |t (F,U)− t (F,W )| ≤ |E (F )| δ� (U,W ).

Proof. The result stated as above requires a few more complex arguments, so I shall prove a
more straightforward result. First note that if a1, a2, b1, b2 ∈ [0, 1], then

|a1a2 − b1b2| ≤ |a1a2 − a2b1|+ |a2b1 − b1b2| ≤ |a1 − b1|+ |a2 − b2| ,

and so more generally, for ai, bi ∈ [0, 1] for i = 1, . . . , n,∣∣∣∣∣
n∏

i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ ≤
n∑

i=1

|ai − bi| .
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By definition of the homomorphism density,

|t (F,U)− t (F,W )| ≤
∫
[0,1]V (F )

∣∣∣∣∣∣
∏

ij∈E(F )

U (xi, xj)−
∏

ij∈E(F )

W (xi, xj)

∣∣∣∣∣∣
∏

i∈V (F )

dxi

≤
∑

ij∈E(F )

∫
[0,1]2
|U (xi, xj)−W (xi, xj)| dxidxj

= |E (F )| ‖U −W‖1 ≤
√
2n |E (F )| ‖U −W‖� .

�

In essence, the counting lemma states that if two graphons are globally close, then they are also
locally close (as expected). The converse is perhaps not so obvious, but still true, as implied by
the inverse counting lemma.

Lemma 2 (INVERSE COUNTING LEMMA). If k is a positive integer such that for every simple
graph F on k nodes, |t (F,U)− t (F,W )| ≤ 2−k

2
, then

δ� (U,W ) ≤ 50√
log k

.

Examples of Convergence. The G (n, p) Erdos-Renyi random graph is a probability distribu-
tion on graphs of size n wherein each potential edge in the graph is included independently
with probability p.

Proposition 3. Let Wn be the graphon for the G (n, p) Erdos-Renyi random graph. Then
‖Wn − p‖�

a.s.→ 0 as n→∞.

Proof. Recalling Bernstein’s inequality, we have that

Pr
(∥∥∥W (n)

t − p
∥∥∥
�
> ε
)
= Pr

(
max

u,v∈{0,1}n

∣∣∣∣∣ 1n2

n∑
i,j=1

uivj

[
W

(n)
t (xi, xj)− p

]∣∣∣∣∣
)

≤
∑

u,v∈{0,1}n
Pr

(∣∣∣∣∣ 1n2

n∑
i,j=1

uivj

[
W

(n)
t (xi, xj)− p

]∣∣∣∣∣ > ε

)
≤ exp

(
−2n2ε2 + (n+ 1) log 2

)
,

which is summable in n, completing the proof. �

Thus, the convergence of graphons can be demonstrated via concentration inequalities for
Bernoulli random variables. As an example of this, note that t (4, p) = p3 and so the den-
sity of triangles in the Erdos-Renyi random graph converges almost surely to p3, which is what
we might expect, given that the probability that any three vertices are fully connected is p3 also
(regardless of the total number of vertices).

For a more complicated example, let G(n)
t be a Markov chain on the space of simple graphs

with n vertices whose edges evolve independently in such a way that, for any vertices i, j, edge
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ij is deleted at rate qt and is added at rate

f

(
deg i+ deg j

2n

)
for some non-negative function f ∈ C2. Let W (n)

t denote the graphon of G(n)
t and suppose that∥∥∥W (n)

0 −W0

∥∥∥
�
→ 0 as n → ∞ for some graphon W0. Define the sequence of graphons Wt

by the recursion

d

dt
Wt (x, y) = [1−Wt (x, y)] · f

(
dWt(x) + dWt(y)

2

)
− qtWt (x, y) .

Theorem 4 (H.). For any T > 0, supt∈[0,T ]

∥∥∥W (n)
t −Wt

∥∥∥
�

a.s.→ 0.


