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To begin, recall the ergodic theorem of Hurewicz proved last week:

Theorem (Hurewicz's Ergodic Theorem). Suppose that T is a conservative, measure-preserving

transformation of the σ-�nite measure space (X,X , µ). Then for almost every x ∈ X and every f, g ∈

L1 (µ) with g > 0,

lim
n→∞

∑n
k=1 T̂

kf (x)∑n
k=1 T̂

kg (x)
= Eµg

[
f

g

∣∣∣∣ T ] (x) ,
where T̂ is the transfer operator for T , µg (E) =

∫
E
gdµ and T is the σ-algebra of T -invariant sets in X .

Remark. If T is invertible (and as it turns out, even when it is not invertible), T̂ kf (x) can be replaced

with f
(
T kx

)
and likewise for g. As a corollary of this, when g ≡ 1, Birkho�'s famous ergodic theorem

is obtained:

lim
n→∞

1

n

n∑
k=1

f
(
T kx

)
= Eµ [f |T ] (x) .

This result essentially states that the long-running averages are projections onto the space of T -invariant

sets. As nice as this result is mathematically, it is not particularly practical at this point. What we

would like is for the expectation to be a constant (not dependent on x).

De�nition. A sequence {xn}∞n=1 ⊂ X is uniform with respect to µ if for every f ∈ C (X),

lim
n→∞

1

n

n∑
k=1

f (xk) =

∫
X

fdµ.

The easiest way to generate a uniform sequence in practice would be by applying an operation to an

initial point repeatedly. What we want to look at are operators T such that the forward orbit {Tnx}∞n=0

is uniform with respect to µ.

Proposition. A measure-preserving system (X,X , µ, T ) is ergodic if and only if for almost every x ∈ X,

the forward orbit {Tnx}∞n=0 is uniform with respect to m.

Proof. Eµ [1A|T ] = µ (A) µ-almost everywhere if and only if T = {∅, X} mod µ, that is, T is ergodic on

(X,X , µ). �

Of course, not all measure-preserving transformations are ergodic, but it turns out that ergodic transfor-

mations act as their building blocks, and this notion follows from the ergodic theorems. Functions in L2

can be approximated arbitrarily close by linear combinations of indicator functions. We can do the same
1
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thing for measure-preserving transformations via the following theorem, which allows for proofs of general

theorems on measure-preserving transformations by proofs on the subset of ergodic transformations.

Theorem (Ergodic Decomposition). Suppose that T is a conservative, invertible, measure-preserving

transformation of a standard σ-�nite measure space (X,X , µ), then there is a probability space (Y,Y, ν)

and a unique family of measures {µy}y∈Y on X such that

1. for every y ∈ Y , T is an invertible, conservative ergodic measure-preserving transformation of

(X,X , µy),

2. for every E ∈ X , µ (E) =
∫
Y
µy (E) dν (y).

Remark. For any f ∈ L1 (µ), there is∫
X

fdµ =

∫
Y

(∫
X

f (x) dµy (x)

)
dν (y) .

To prove this result, we need a powerful theorem from probability theory. This theorem can be thought

of as a way of conditioning on events with zero measure.

Theorem (Disintegration Theorem). Let (X,X , µ) be a probability space and (Y,Y) a measurable

space. Suppose π : X → Y is measurable and the pushforward measure ν = µ ◦ π−1 ∈ P (Y,Y).

Then there is a Y0 ∈ Y such that ν (Y0) = 1 and there is a unique family of measures {µy}y∈Y0
on X

such that µy
(
π−1 {y}

)
= 1 for every y ∈ Y0 and for every A ∈ X , B ∈ Y,

µ
(
A ∩ π−1B

)
=

∫
B

µy (A) dν (y) .

For each y ∈ Y0, µy is called the �bre measure over π−1 {y}.

Remark. Observe that since π−1 (Y0) has full measure on µ, µ (A) =
∫
Y0
µy (A) dν (y). More generally,

there is ∫
X

f (g ◦ π) dµ =

∫
Y

(∫
X

fdµy

)
g (y) dν (y) .

Proof Outline.

• For each set A ∈ X , de�ne measures νA (B) := µ
(
A ∩ π−1B

)
.

• If ν (B) = 0, then νA (B) ≤ µ◦π−1 (B) = 0 and so we can de�ne uy as the mapping A 7→ ∂νA
∂ν (y),

which satis�es

µ
(
A ∩ π−1B

)
=

∫
B

uy (A) ν (y) .

• It only remains to make uy into measures. It is easy to check that it is countably additive on

disjoint sets.

• Performing Caratheodory construction on the outer measures generated by uy, we obtain the

desired µy.
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�

From this, we can prove our main theorem.

Proof of Main Theorem.

Reduction to the Probability Space

• Let P be a probability measure on (X,X ) with the same null sets as µ and let T be the σ-algebra

of invariant sets of T .

• T is a conservative, invertible, non-singular transformation of the probability space (X,X , P ).

• By the factor proposition, there is a probability space (Y,Y, ν) and a factor map π : X → Y

such that π−1Y = T and ν = µ ◦ π−1.

• Apply the disintegration theorem to get Y0 ∈ Y with full ν-measure and a family of measures

{Py}y∈Y0
on X.

Constructing the Family of Measures (Property 2)

• De�ne the family of measures {µy}y∈Y by

µy (E) =

∫
E

∂µ

∂P
dPy.

• Observe that there is∫
Y

µy (E) dν (y) =

∫
Y

(∫
X

1E (x)
∂µ

∂P
dPy (x)

)
dν (y) =

∫
E

∂µ

∂P
dP = µ (E) .

T is Invertible and Conservative on µy

• T is still invertible on µy.

• Using standard results, it is straightforward to show T is conservative on (X,X , Py) for every

y ∈ Y .

• Also implies that T is conservative on µy.

T is Measure-Preserving on µy

• Let f be the Radon-Nikodym derivative of µ with respect to P . Then using the chain rule of

Radon-Nikodym derivatives repeatedly, there is

∂ (P ◦ T )
∂P

=
f

f ◦ T
.

• Since T is non-singular, Py ◦ T ∼ Py. Indeed, for almost every y ∈ Y0, by the uniqueness of the

disintegration,

∂ (Py ◦ T )
∂Py

=
∂ (P ◦ T )

∂P
=

f

f ◦ T
Py-almost everywhere.
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because

(P ◦ T ) (B) =

∫
Y0

(Py ◦ T ) (B) dν (y) =

∫
Y0

∫
B

∂ (Py ◦ T )
∂Py

dPydν (y) .

• From this, we can deduce that

∂ (µy ◦ T )
∂µy

=
∂ (µy ◦ T )
∂ (Py ◦ T )

· ∂ (Py ◦ T )
∂Py

· ∂Py
∂µy

=
f ◦ T
f
· f

f ◦ T
= 1.

• Thus T is measure-preserving on µy.

T is Ergodic on µy

• By the Birkho� ergodic theorem for T on (X,X , P ), for almost every x ∈ X and B ∈ X ,

lim
n→∞

1

n

n∑
k=1

1B
(
T kx

)
= EP [1B |T ] (x) = Pπx (B) .

• Since Py
(
π−1 {y}

)
= 1, for Py-almost every x ∈ X, πx = y. Thus, for almost every y ∈ Y ,

Pπx (B) = Py (B) Py-almost everywhere.

• By the Birkho� ergodic theorem for T on (X,X , Py),

lim
n→∞

1

n

n∑
k=1

1B
(
T kx

)
= EPy

[1B |T ] (x) .

• Equating the two gives for every B ∈ X and almost every y ∈ Y , and Py-almost every x ∈ X,

EPy
[1B |T ] (x) = Py (B) .

• Thus, T is ergodic on Py, and T is still ergodic on µy.

�


