ERGODIC DECOMPOSITIONS

LIAM HODGKINSON

To begin, recall the ergodic theorem of Hurewicz proved last week:

Theorem (Hurewicz's Ergodic Theorem). Suppose that T is a conservative, measure-preserving transformation of the σ-finite measure space (X, \mathcal{X}, μ). Then for almost every $x \in X$ and every $f, g \in$ $L^{1}(\mu)$ with $g>0$,

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \hat{T}^{k} f(x)}{\sum_{k=1}^{n} \hat{T}^{k} g(x)}=\mathbb{E}_{\mu_{g}}\left[\left.\frac{f}{g} \right\rvert\, \mathcal{T}\right](x),
$$

where \hat{T} is the transfer operator for $T, \mu_{g}(E)=\int_{E} g d \mu$ and \mathcal{T} is the σ-algebra of T-invariant sets in \mathcal{X}. Remark. If T is invertible (and as it turns out, even when it is not invertible), $\hat{T}^{k} f(x)$ can be replaced with $f\left(T^{k} x\right)$ and likewise for g. As a corollary of this, when $g \equiv 1$, Birkhoff's famous ergodic theorem is obtained:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(T^{k} x\right)=\mathbb{E}_{\mu}[f \mid \mathcal{T}](x)
$$

This result essentially states that the long-running averages are projections onto the space of T-invariant sets. As nice as this result is mathematically, it is not particularly practical at this point. What we would like is for the expectation to be a constant (not dependent on x).

Definition. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ is uniform with respect to μ if for every $f \in C(X)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(x_{k}\right)=\int_{X} f d \mu
$$

The easiest way to generate a uniform sequence in practice would be by applying an operation to an initial point repeatedly. What we want to look at are operators T such that the forward orbit $\left\{T^{n} x\right\}_{n=0}^{\infty}$ is uniform with respect to μ.

Proposition. A measure-preserving system (X, \mathcal{X}, μ, T) is ergodic if and only if for almost every $x \in X$, the forward orbit $\left\{T^{n} x\right\}_{n=0}^{\infty}$ is uniform with respect to m.

Proof. $\mathbb{E}_{\mu}\left[\mathbb{1}_{A} \mid \mathcal{T}\right]=\mu(A) \mu$-almost everywhere if and only if $\mathcal{T}=\{\emptyset, X\} \bmod \mu$, that is, \mathcal{T} is ergodic on (X, \mathcal{X}, μ).

Of course, not all measure-preserving transformations are ergodic, but it turns out that ergodic transformations act as their building blocks, and this notion follows from the ergodic theorems. Functions in L^{2} can be approximated arbitrarily close by linear combinations of indicator functions. We can do the same
thing for measure-preserving transformations via the following theorem, which allows for proofs of general theorems on measure-preserving transformations by proofs on the subset of ergodic transformations.

Theorem (Ergodic Decomposition). Suppose that T is a conservative, invertible, measure-preserving transformation of a standard σ-finite measure space (X, \mathcal{X}, μ), then there is a probability space (Y, \mathcal{Y}, ν) and a unique family of measures $\left\{\mu_{y}\right\}_{y \in Y}$ on X such that

1. for every $y \in Y, T$ is an invertible, conservative ergodic measure-preserving transformation of $\left(X, \mathcal{X}, \mu_{y}\right)$,
2. for every $E \in \mathcal{X}, \mu(E)=\int_{Y} \mu_{y}(E) d \nu(y)$.

Remark. For any $f \in L^{1}(\mu)$, there is

$$
\int_{X} f d \mu=\int_{Y}\left(\int_{X} f(x) d \mu_{y}(x)\right) d \nu(y)
$$

To prove this result, we need a powerful theorem from probability theory. This theorem can be thought of as a way of conditioning on events with zero measure.

Theorem (Disintegration Theorem). Let (X, \mathcal{X}, μ) be a probability space and (Y, \mathcal{Y}) a measurable space. Suppose $\pi: X \rightarrow Y$ is measurable and the pushforward measure $\nu=\mu \circ \pi^{-1} \in \mathcal{P}(Y, \mathcal{Y})$.

Then there is a $Y_{0} \in \mathcal{Y}$ such that $\nu\left(Y_{0}\right)=1$ and there is a unique family of measures $\left\{\mu_{y}\right\}_{y \in Y_{0}}$ on X such that $\mu_{y}\left(\pi^{-1}\{y\}\right)=1$ for every $y \in Y_{0}$ and for every $A \in \mathcal{X}, B \in \mathcal{Y}$,

$$
\mu\left(A \cap \pi^{-1} B\right)=\int_{B} \mu_{y}(A) d \nu(y) .
$$

For each $y \in Y_{0}, \mu_{y}$ is called the fibre measure over $\pi^{-1}\{y\}$.

Remark. Observe that since $\pi^{-1}\left(Y_{0}\right)$ has full measure on $\mu, \mu(A)=\int_{Y_{0}} \mu_{y}(A) d \nu(y)$. More generally, there is

$$
\int_{X} f(g \circ \pi) d \mu=\int_{Y}\left(\int_{X} f d \mu_{y}\right) g(y) d \nu(y) .
$$

Proof Outline.

- For each set $A \in \mathcal{X}$, define measures $\nu_{A}(B):=\mu\left(A \cap \pi^{-1} B\right)$.
- If $\nu(B)=0$, then $\nu_{A}(B) \leq \mu \circ \pi^{-1}(B)=0$ and so we can define u_{y} as the mapping $A \mapsto \frac{\partial \nu_{A}}{\partial \nu}(y)$, which satisfies

$$
\mu\left(A \cap \pi^{-1} B\right)=\int_{B} u_{y}(A) \nu(y)
$$

- It only remains to make u_{y} into measures. It is easy to check that it is countably additive on disjoint sets.
- Performing Caratheodory construction on the outer measures generated by u_{y}, we obtain the desired μ_{y}.

From this, we can prove our main theorem.

Proof of Main Theorem.

Reduction to the Probability Space

- Let P be a probability measure on (X, \mathcal{X}) with the same null sets as μ and let \mathcal{T} be the σ-algebra of invariant sets of T.
- T is a conservative, invertible, non-singular transformation of the probability space (X, \mathcal{X}, P).
- By the factor proposition, there is a probability space (Y, \mathcal{Y}, ν) and a factor map $\pi: X \rightarrow Y$ such that $\pi^{-1} \mathcal{Y}=\mathcal{T}$ and $\nu=\mu \circ \pi^{-1}$.
- Apply the disintegration theorem to get $Y_{0} \in \mathcal{Y}$ with full ν-measure and a family of measures $\left\{P_{y}\right\}_{y \in Y_{0}}$ on X.

Constructing the Family of Measures (Property 2)

- Define the family of measures $\left\{\mu_{y}\right\}_{y \in Y}$ by

$$
\mu_{y}(E)=\int_{E} \frac{\partial \mu}{\partial P} d P_{y}
$$

- Observe that there is

$$
\int_{Y} \mu_{y}(E) d \nu(y)=\int_{Y}\left(\int_{X} \mathbb{1}_{E}(x) \frac{\partial \mu}{\partial P} d P_{y}(x)\right) d \nu(y)=\int_{E} \frac{\partial \mu}{\partial P} d P=\mu(E)
$$

T is Invertible and Conservative on μ_{y}

- T is still invertible on μ_{y}.
- Using standard results, it is straightforward to show T is conservative on $\left(X, \mathcal{X}, P_{y}\right)$ for every $y \in Y$.
- Also implies that T is conservative on μ_{y}.
T is Measure-Preserving on μ_{y}
- Let f be the Radon-Nikodym derivative of μ with respect to P. Then using the chain rule of Radon-Nikodym derivatives repeatedly, there is

$$
\frac{\partial(P \circ T)}{\partial P}=\frac{f}{f \circ T}
$$

- Since T is non-singular, $P_{y} \circ T \sim P_{y}$. Indeed, for almost every $y \in Y_{0}$, by the uniqueness of the disintegration,

$$
\frac{\partial\left(P_{y} \circ T\right)}{\partial P_{y}}=\frac{\partial(P \circ T)}{\partial P}=\frac{f}{f \circ T} P_{y} \text {-almost everywhere. }
$$

because

$$
(P \circ T)(B)=\int_{Y_{0}}\left(P_{y} \circ T\right)(B) d \nu(y)=\int_{Y_{0}} \int_{B} \frac{\partial\left(P_{y} \circ T\right)}{\partial P_{y}} d P_{y} d \nu(y)
$$

- From this, we can deduce that

$$
\begin{aligned}
\frac{\partial\left(\mu_{y} \circ T\right)}{\partial \mu_{y}} & =\frac{\partial\left(\mu_{y} \circ T\right)}{\partial\left(P_{y} \circ T\right)} \cdot \frac{\partial\left(P_{y} \circ T\right)}{\partial P_{y}} \cdot \frac{\partial P_{y}}{\partial \mu_{y}} \\
& =\frac{f \circ T}{f} \cdot \frac{f}{f \circ T}=1 .
\end{aligned}
$$

- Thus T is measure-preserving on μ_{y}.
T is Ergodic on μ_{y}
- By the Birkhoff ergodic theorem for T on (X, \mathcal{X}, P), for almost every $x \in X$ and $B \in \mathcal{X}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{B}\left(T^{k} x\right)=\mathbb{E}_{P}\left[\mathbb{1}_{B} \mid \mathcal{T}\right](x)=P_{\pi x}(B)
$$

- Since $P_{y}\left(\pi^{-1}\{y\}\right)=1$, for P_{y}-almost every $x \in X, \pi x=y$. Thus, for almost every $y \in Y$, $P_{\pi x}(B)=P_{y}(B) P_{y}$-almost everywhere.
- By the Birkhoff ergodic theorem for T on $\left(X, \mathcal{X}, P_{y}\right)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{B}\left(T^{k} x\right)=\mathbb{E}_{P_{y}}\left[\mathbb{1}_{B} \mid \mathcal{T}\right](x)
$$

- Equating the two gives for every $B \in \mathcal{X}$ and almost every $y \in Y$, and P_{y}-almost every $x \in X$,

$$
\mathbb{E}_{P_{y}}\left[\mathbb{1}_{B} \mid \mathcal{T}\right](x)=P_{y}(B)
$$

- Thus, T is ergodic on P_{y}, and T is still ergodic on μ_{y}.

