ERGODIC DECOMPOSITIONS

LIAM HODGKINSON

To begin, recall the ergodic theorem of Hurewicz proved last week:

Theorem (HUREWICZ'S ERGODIC THEOREM). Suppose that T is a conservative, measure-preserving transformation of the σ -finite measure space (X, \mathcal{X}, μ) . Then for almost every $x \in X$ and every $f, g \in L^1(\mu)$ with g > 0,

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \hat{T}^{k} f\left(x\right)}{\sum_{k=1}^{n} \hat{T}^{k} g\left(x\right)} = \mathbb{E}_{\mu_{g}}\left[\frac{f}{g} \middle| \mathcal{T}\right]\left(x\right),$$

where \hat{T} is the transfer operator for T, $\mu_g(E) = \int_E g d\mu$ and \mathcal{T} is the σ -algebra of T-invariant sets in \mathcal{X} .

Remark. If T is invertible (and as it turns out, even when it is not invertible), $\hat{T}^k f(x)$ can be replaced with $f(T^k x)$ and likewise for g. As a corollary of this, when $g \equiv 1$, Birkhoff's famous ergodic theorem is obtained:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(T^{k} x\right) = \mathbb{E}_{\mu}\left[f | \mathcal{T}\right](x).$$

This result essentially states that the long-running averages are projections onto the space of T-invariant sets. As nice as this result is mathematically, it is not particularly practical at this point. What we would like is for the expectation to be a constant (not dependent on x).

Definition. A sequence $\{x_n\}_{n=1}^{\infty} \subset X$ is uniform with respect to μ if for every $f \in C(X)$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(x_k) = \int_X f d\mu.$$

The easiest way to generate a uniform sequence in practice would be by applying an operation to an initial point repeatedly. What we want to look at are operators T such that the forward orbit $\{T^n x\}_{n=0}^{\infty}$ is uniform with respect to μ .

Proposition. A measure-preserving system (X, \mathcal{X}, μ, T) is ergodic if and only if for almost every $x \in X$, the forward orbit $\{T^n x\}_{n=0}^{\infty}$ is uniform with respect to m.

Proof. $\mathbb{E}_{\mu}[\mathbb{1}_{A}|\mathcal{T}] = \mu(A) \mu$ -almost everywhere if and only if $\mathcal{T} = \{\emptyset, X\} \mod \mu$, that is, \mathcal{T} is ergodic on (X, \mathcal{X}, μ) .

Of course, not all measure-preserving transformations are ergodic, but it turns out that ergodic transformations act as their building blocks, and this notion follows from the ergodic theorems. Functions in L^2 can be approximated arbitrarily close by linear combinations of indicator functions. We can do the same thing for measure-preserving transformations via the following theorem, which allows for proofs of general theorems on measure-preserving transformations by proofs on the subset of ergodic transformations.

Theorem (ERGODIC DECOMPOSITION). Suppose that T is a conservative, invertible, measure-preserving transformation of a standard σ -finite measure space (X, \mathcal{X}, μ) , then there is a probability space (Y, \mathcal{Y}, ν) and a unique family of measures $\{\mu_y\}_{y \in Y}$ on X such that

1. for every $y \in Y$, T is an invertible, conservative ergodic measure-preserving transformation of (X, \mathcal{X}, μ_y) ,

2. for every $E \in \mathcal{X}$, $\mu(E) = \int_{Y} \mu_{y}(E) d\nu(y)$.

Remark. For any $f \in L^{1}(\mu)$, there is

$$\int_{X} f d\mu = \int_{Y} \left(\int_{X} f(x) d\mu_{y}(x) \right) d\nu(y) \,.$$

To prove this result, we need a powerful theorem from probability theory. This theorem can be thought of as a way of conditioning on events with zero measure.

Theorem (DISINTEGRATION THEOREM). Let (X, \mathcal{X}, μ) be a probability space and (Y, \mathcal{Y}) a measurable space. Suppose $\pi : X \to Y$ is measurable and the pushforward measure $\nu = \mu \circ \pi^{-1} \in \mathcal{P}(Y, \mathcal{Y})$. Then there is a $Y_0 \in \mathcal{Y}$ such that $\nu(Y_0) = 1$ and there is a unique family of measures $\{\mu_y\}_{y \in Y_0}$ on Xsuch that $\mu_y(\pi^{-1}\{y\}) = 1$ for every $y \in Y_0$ and for every $A \in \mathcal{X}, B \in \mathcal{Y}$,

$$\mu\left(A \cap \pi^{-1}B\right) = \int_{B} \mu_{y}\left(A\right) d\nu\left(y\right)$$

For each $y \in Y_0$, μ_y is called the fibre measure over $\pi^{-1}\{y\}$.

Remark. Observe that since $\pi^{-1}(Y_0)$ has full measure on μ , $\mu(A) = \int_{Y_0} \mu_y(A) d\nu(y)$. More generally, there is

$$\int_{X} f(g \circ \pi) d\mu = \int_{Y} \left(\int_{X} f d\mu_{y} \right) g(y) d\nu(y) \, .$$

Proof Outline.

- For each set $A \in \mathcal{X}$, define measures $\nu_A(B) := \mu(A \cap \pi^{-1}B)$.
- If $\nu(B) = 0$, then $\nu_A(B) \le \mu \circ \pi^{-1}(B) = 0$ and so we can define u_y as the mapping $A \mapsto \frac{\partial \nu_A}{\partial \nu}(y)$, which satisfies

$$\mu\left(A \cap \pi^{-1}B\right) = \int_{B} u_{y}\left(A\right)\nu\left(y\right).$$

- It only remains to make u_y into measures. It is easy to check that it is countably additive on disjoint sets.
- Performing Caratheodory construction on the outer measures generated by u_y , we obtain the desired μ_y .

From this, we can prove our main theorem.

Proof of Main Theorem.

REDUCTION TO THE PROBABILITY SPACE

- Let P be a probability measure on (X, \mathcal{X}) with the same null sets as μ and let \mathcal{T} be the σ -algebra of invariant sets of T.
- T is a conservative, invertible, non-singular transformation of the probability space (X, \mathcal{X}, P) .
- By the factor proposition, there is a probability space (Y, \mathcal{Y}, ν) and a factor map $\pi : X \to Y$ such that $\pi^{-1}\mathcal{Y} = \mathcal{T}$ and $\nu = \mu \circ \pi^{-1}$.
- Apply the disintegration theorem to get $Y_0 \in \mathcal{Y}$ with full ν -measure and a family of measures $\{P_y\}_{y \in Y_0}$ on X.

CONSTRUCTING THE FAMILY OF MEASURES (PROPERTY 2)

• Define the family of measures $\{\mu_y\}_{y \in Y}$ by

$$\mu_y\left(E\right) = \int_E \frac{\partial\mu}{\partial P} dP_y.$$

• Observe that there is

$$\int_{Y} \mu_{y}\left(E\right) d\nu\left(y\right) = \int_{Y} \left(\int_{X} \mathbb{1}_{E}\left(x\right) \frac{\partial \mu}{\partial P} dP_{y}\left(x\right)\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\nu\left(y\right) = \int_{E} \frac{\partial \mu}{\partial P} dP = \mu\left(E\right) d\mu dP$$

T is Invertible and Conservative on μ_y

- T is still invertible on μ_y .
- Using standard results, it is straightforward to show T is conservative on (X, \mathcal{X}, P_y) for every $y \in Y$.
- Also implies that T is conservative on μ_y .

T is Measure-Preserving on μ_y

• Let f be the Radon-Nikodym derivative of μ with respect to P. Then using the chain rule of Radon-Nikodym derivatives repeatedly, there is

$$\frac{\partial \left(P \circ T \right)}{\partial P} = \frac{f}{f \circ T}.$$

Since T is non-singular, P_y ◦ T ∼ P_y. Indeed, for almost every y ∈ Y₀, by the uniqueness of the disintegration,

$$\frac{\partial \left(P_y \circ T\right)}{\partial P_y} = \frac{\partial \left(P \circ T\right)}{\partial P} = \frac{f}{f \circ T} P_y \text{-almost everywhere.}$$

because

$$\left(P\circ T\right)\left(B\right)=\int_{Y_{0}}\left(P_{y}\circ T\right)\left(B\right)d\nu\left(y\right)=\int_{Y_{0}}\int_{B}\frac{\partial\left(P_{y}\circ T\right)}{\partial P_{y}}dP_{y}d\nu\left(y\right).$$

• From this, we can deduce that

$$\frac{\partial \left(\mu_y \circ T\right)}{\partial \mu_y} = \frac{\partial \left(\mu_y \circ T\right)}{\partial \left(P_y \circ T\right)} \cdot \frac{\partial \left(P_y \circ T\right)}{\partial P_y} \cdot \frac{\partial P_y}{\partial \mu_y}$$
$$= \frac{f \circ T}{f} \cdot \frac{f}{f \circ T} = 1.$$

• Thus T is measure-preserving on μ_y .

T is Ergodic on μ_y

• By the Birkhoff ergodic theorem for T on (X, \mathcal{X}, P) , for almost every $x \in X$ and $B \in \mathcal{X}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{B} \left(T^{k} x \right) = \mathbb{E}_{P} \left[\mathbb{1}_{B} | \mathcal{T} \right] \left(x \right) = P_{\pi x} \left(B \right).$$

- Since $P_y(\pi^{-1}{y}) = 1$, for P_y -almost every $x \in X$, $\pi x = y$. Thus, for almost every $y \in Y$, $P_{\pi x}(B) = P_y(B) P_y$ -almost everywhere.
- By the Birkhoff ergodic theorem for T on (X, \mathcal{X}, P_y) ,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{B} \left(T^{k} x \right) = \mathbb{E}_{P_{y}} \left[\mathbb{1}_{B} | \mathcal{T} \right] (x).$$

• Equating the two gives for every $B \in \mathcal{X}$ and almost every $y \in Y$, and P_y -almost every $x \in X$,

$$\mathbb{E}_{P_{y}}\left[\mathbb{1}_{B}|\mathcal{T}\right](x) = P_{y}\left(B\right).$$

• Thus, T is ergodic on P_y , and T is still ergodic on μ_y .