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There are a number of fundamental ideas in the realm of dynamical systems and applied measure

theory that I �nd absolutely wonderful. An obvious choice is the class of ergodic theorems, with

their incredible applications not only in physical systems, but in statistics and experimental

design, as well as number theory. There is also the Monge and Kantorovich duality formulae,

which led to the founding of descriptive geometry, with some awesome applications in operations

research (OR is basically all just duality theory to be honest). Today's presentation will touch

upon one of my favourite ideas in all of mathematics.

Often in mathematical modelling we consider memoryless, time-homogeneous systems: excluding

all other factors, based on where we are right now, where will we go? Examples of this are ODEs,

PDEs, time-homogeneous Markov processes. Please note: extensions to time-inhomogeneous

systems are also available, but are rarely considered because almost all time-inhomogeneous sys-

tems can be embedded in time-homogeneous systems. To imbue these ideas into a mathematical

de�nition, we introduce the idea of a semidynamical system.

De�nition. A semidynamical system {St}t≥0 on X is a family of measurable transformations

St : X → X for t ∈ R+ satisfying

(1) S0 (x) = x for all x ∈ X,

(2) St ◦ St′ (x) = St+t′ (x) for all x ∈ X and t, t′ ∈ R+ (future locations determined only

based on current position; semigroup/group property), and

(3) the mapping (t, x)→ St (x) is continuous from X × R+ into X.

Example. Let St (x) = y (t) where y (t) satis�es the initial value problem y′ = F (y) and

y (0) = x where F : Rd → Rd is su�ciently smooth to ensure solutions exist and are unique

(suppose F ∈ C1). Then {St}t≥0 is a dynamical system. But delay-di�erential equations and

other time-inhomogeneous systems can also be expressed in terms of a semidynamical system.

The construction of a semidynamical system is very useful: many ideas of ergodic theory for

discrete-time systems extend to semidynamical systems almost directly since Snt0 = Snt0 for any

t0 > 0.

To develop some ergodic theory on these semidynamical systems, we need the notion of an

invariant measure.

De�nition. A measure µ is called invariant under a family {St}t≥0 of measurable transforma-

tions St : X → X if µ
(
S−1t (A)

)
= µ (A) for all measurable sets A.

Theorem. Let µ be a �nite invariant measure with respect to the semidynamical system {St}t≥0
and let f ∈ L1 (X). Then

f∗ (x) = lim
T→∞

1

T

∫ T

0
f (St (x)) dt

exists for µ-almost every x ∈ X.
1



SYSTEMS IN CONTINUOUS-TIME: THE THEORY OF SEMIGROUPS 2

Proof. For any integer n ∈ N, there is
∫ n
0 f (St (x)) dt =

∑n−1
k=0

∫ 1
0 f (St ◦ Sk (x)) dt and so by

de�ning gf (x) =
∫ 1
0 f (St (x)) dt, there is

lim
T→∞

1

T

∫ T

0
f (St (x)) dt = lim

n→∞

1

n

n−1∑
k=0

gf

(
Sk1 (x)

)
,

and so the result follows by the pointwise ergodic theorem. �

Using this same idea, many asymptotic results in discrete time systems also hold for continuous

time systems as well. Thus, the de�nitions of ergodicity, mixing, exactness, and asymptotic

stability have obvious counterparts for the continuous-time system corresponding to an invariant

measure. Most importantly, however, the idea of this group property for time-homogeneous

systems extends to transfer operators as well. For this purpose, we de�ne semigroups as follows.

De�nition (Semigroups). A continuous semigroup on a Banach space X is a family of linear

operators {Tt}t≥0, with Tt : X → X such that T0x = x for every x ∈ X, Tt+s = Tt ◦ Ts for

every s, t ≥ 0, and Ttx→ x strongly in X for every x ∈ X as t→ 0+. A contraction semigroup

is a continuous semigroup {Tt}t≥0 which also satis�es ‖Ttx‖ ≤ ‖x‖ for every x ∈ X. For a

Polish space S, a C0-semigroup is a contraction semigroup on the Banach space C0 (S) (closure

of C∞c (S) functions).

Application to Probability: If Xt is a continuous-time Markov process on the state space S

with su�ciently local transitions, then the collection of operators {Tt}t≥0 de�ned by Ttf (x) =

Exf (Xt) is a C0-semigroup on S (follows from the Chapman-Kolmogorov relations). Alterna-

tively, for any C0-semigroup Tt on S, there exists a unique continuous-time Markov process Xt

on the one-point compacti�cation Ŝ such that Ttf (x) = Exf (Xt) for every f ∈ C0

(
Ŝ
)
and

x ∈ Ŝ [Kallenberg, Proposition 19.14]. In this way, semigroup theory is fundamental in the

study of continuous-time stochastic processes.

Application to Dynamical Systems: Suppose that a semidynamical system {St}t≥0 is non-
singular with respect to a measure µ, that is, µ ◦S−1t � µ. We can de�ne the Frobenius-Perron

and Koopman operators Pt : L
1 (X)→ L1 (X) and Ut : L

∞ (X)→ L∞ (X) by∫
St(A)

Ptf (x)µ (dx) =

∫
A
f (x)µ (dx) for f ∈ L1

Utf (x) = f (St (x)) for f ∈ L∞.

For each t, Pt is a linear Markov operator, and there is∫
A
Pt+t′f (x)µ (dx) =

∫
S−1
t′ ◦S

−1
t (A)

f (x)µ (dx) =

∫
A
Pt ◦ Pt′f (x)µ (dx) ,

and so Pt+t′ = Pt ◦Pt′ in L1 for any t, t′ ≥ 0. Additionally, since S0 (x) = x, P0f = f . Similarly,

Ut+t′ = Ut ◦ Ut′ and U0f = f . Thus, both Pt and Ut are examples of contraction semigroups.

Application to PDEs: To come.

Infinitesimal Generators

The greatest advantage with working with semigroups is the construction of the so-called in�n-

itesimal generator. This terminology is familiar to anyone who has studied probability to any

reasonable extent. For the rest of this talk, I will look at these objects and the essential theorems

surrounding them. I believe the following quote explains it best:
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�The problems associated with the study of continuous-time processes are more

di�cult than those encountered in discrete time systems. This is partially due

to concerns over continuity of processes with respect to time. Also, equiva-

lent formulations of discrete and continuous time properties may appear more

complicated in the continuous case because of the use of integrals rather than

summations, for example, in the Birkho� ergodic theorem. However, there is

one great advantage in the study of continuous time problems over discrete time

dynamics, and this is the existence of a new tool - the in�nitesimal generator.�

[Lasota & Mackey, Chapter 7].

De�nition. Let {Tt}t≥0 be a semigroup on a Banach space X. Let D (A) be the linear subspace

of all x ∈ X such that the limit

Ax := lim
t→0+

Ttx− x
t

exists, where the limit is in the strong (norm) topology on X. The resulting operator A :

D (A)→ X is called the in�nitesimal generator. A dense subset of D (A) is called a core of the

generator: for D (A) ⊂ C0 (S), the subspace D (A) ∩ C∞c (S) is a classically chosen core.

Remark. D (A) is a linear subspace of L. It will be shown later that the subspace D (A) is dense

and so A uniquely determines a semigroup (consequence of the Hille-Yosida Theorem).

It is immediately clear from the linearity of Tt that A is a linear operator. The boundedness of

A has a very important interpretation as well. If A is bounded, then the above limit is occuring

at a rate which is more or less independent of t.

Lemma. A is a bounded operator if and only if Tt is uniformly continuous, that is, limt→0+ ‖Tt − I‖ =
0. In this case, D (A) = X.

The proof of this is surprisingly non-trivial, but can be found in [Dunford & Schwarz, VIII.1.9].

With this in mind, we can properly introduce the in�nitesimal generator as a 'derivative' of the

semigroup as a whole, linking our original time-homogeneous ODE idea with semigroups.

Theorem (Kolmogorov Equations). Let {Tt}t≥0 be a continuous semigroup on X with

corresponding in�nitesimal generator A : D (A) → X. Suppose that A is a bounded operator.

For any x ∈ D (A), Ttx ∈ D (A) for every t ≥ 0, and

d

dt
(Ttx) =

(forward)

ATtx =
(backward)

TtAx .

Proof:

• From above, since A is bounded, Tt is uniformly continuous.

• Consider any t0 > 0.

• Taking the limit from above (t > t0), for any x ∈ D (A), by the continuity of Tt0 ,

lim
t→t+0

Ttx− Tt0x
t− t0

= lim
t→t+0

Tt0

(
Tt−t0x− x
t− t0

)
= Tt0Ax.

• For t < t0, there is∥∥∥∥Ttx− Tt0xt− t0
− Tt0Ax

∥∥∥∥ =

∥∥∥∥Tt(Tt0−tx− xt0 − t
−Ax

)∥∥∥∥+ ‖TtAx− Tt0Ax‖ .
• The right term goes to zero as t→ t−0 by de�nition of continuous semigroup.
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• By the uniform continuity of Tt, the family of {‖Tt‖} is uniformly bounded for t suf-

�ciently close to t0 (to do this rigorously is actually really damn hard) and so the left

term also converges to zero as t→ t−0 . This proves the backward equations hold.

• The forward equations are found on observation that

Ttx− Tt0x
t− t0

=
Tt−t0 (Tt0x)− Tt0x

t− t0
for t > t0.

In light of the Kolmogorov equations, it is common to use the notation Tt = eAt, as it can be

shown that the solution is given by

Ttx =
∞∑
k=0

tk

k!
Akx.

De�ning u (t) = Ttx, we �nd that u is the solution to u′ = Au and u (0) = x. Often, we might

want to know conditions for when such solutions exist for some arbitrary operator A (which may

even be an integro-di�erential operator or a partial di�erential operator). The link to semigroup

theory is made rigorous in the following theorem. For this, we remind the readers about a bit

of spectral theory:

De�nition. The resolvent set of a linear operator A is the collection of all λ ≥ 0 such that

λI −A is an invertible bounded linear operator. The resolvent operator Rλ (A) is de�ned for all

λ in the resolvent set of A by Rλ (A) = (λI −A)−1.

We will be dropping the (A) notation, since it will be understood that the resolvent operator

always applies to the in�nitesimal generator.

Theorem (Mild Solutions to Abstract Cauchy Problems). Suppose that A is a closed

linear operator (if xn → x and Axn → y then Ax = y) on X with non-empty resolvent set.

Then for every x ∈ X, there exists a unique continuously di�erentiable function u : R+ → X

with u (t) ∈ D (A) for all t > 0 satisfying

u′ (t) = Au (t) , t ≥ 0

u (0) = x,

if and only if A is the in�nitesimal generator of a continuous semigroup Tt, in which case

u (t) = Ttx.

Proof (Outline):

• Su�ciency, that is, the existence of a corresponding semigroup implies solutions, follows

from the Kolmogorov equations.

• Choose a λ in the resolvent set. For any x ∈ X, de�ne ux (t) = R−1λ v (t) where v (t)

satis�es v′ (t) = Av (t) and v (0) = Rλx, so that ux uniquely satis�es∫ t

0
ux (s)− λv (s) ds = (λ−A)−1 (x− ux (t))

and since
∫ t
0 Av (s) ds = A

∫ t
0 v (s) ds,

ux (t) = x+A

∫ t

0
ux (s) ds.

• Since
∫ t
0 ux (s) ds is the solution to the problem for initial value 0, ux is the unique

solution to this above equation.
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• From uniqueness, x 7→ ux is linear and so for every t ≥ 0, the mapping Tt : X → X

de�ned by Ttx = ux (t) is linear.

• It can be shown that Tt is also a bounded linear operator (this is a little tedious; it makes

use of the closed graph theorem for A) for every t ≥ 0.

• By uniqueness, t 7→ ux (t+ s) is equivalent to t 7→ uux(s) (t) and so Tt+s = Tt ◦ Ts.
• From the Kolmogorov equations, the resulting in�nitesimal generator of Tt must be

equivalent to A.

Alternatively, we might wish to construct a Markov process based on how we expect the pro-

cess to evolve through time (unlike Brownian motion, which is constructed based on its �nite-

dimensional distributions). Both problems can be answered using the Hille-Yosida Theorem

which provides necessary and su�cient conditions for when a given operator A is the in�nitesi-

mal generator of a semigroup. This theorem is highly celebrated, and there are many di�erent

versions available for many di�erent applications.

Theorem (Hille-Yosida Theorem). The following are necessary and su�cient conditions for

a closed linear operator A : D (A)→ X where D (A) ⊂ X is dense in X, to be the in�nitesimal

generator of a corresponding semigroup:

• Hille-Yosida-Phillips (Continuous Semigroup): There exist constants M > 0 and

ω ≥ 0 such that ‖Rnλ‖ ≤ M (λ− ω)−n for all n ∈ N and λ > ω, in which case ‖Tt‖ ≤
Meωt for all t ≥ 0.

• Lumer-Phillips (Contraction Semigroup): A is dissipative, that is, ‖λx−Ax‖ ≥
λ ‖x‖ for every x ∈ D (A) and λ > 0, and Rλ0 is de�ned on all of X for some λ0.

• Hille-Yosida-Ray (C0-Semigroup): For every function f ∈ C0 with a global maxi-

mum x and f (x) ≥ 0, Af (x) ≤ 0 (the positive-maximum principle), and the range of

λ0 −A is dense in C0 for some λ0 > 0.

Remark. If X is a re�exive space, the conditions that D (A) ⊂ X and A is closed are automati-

cally implied by any of the other conditions.

The proof of this result is always very challenging. It relies on two very deep fundamental

concepts in semigroup theory; these ideas are absolutely inescapable when proving any low-level

result in the theory. Rigorous proofs of all of the previous results are usually done in the context

of these ideas. The �rst is an explicit description of the resolvent operators.

Lemma. The resolvent operators are the Laplace transform of the semigroup, that is, Rλx =∫∞
0 e−λtTtxdt.

Proof:

• Observe that R−1µ −R−1λ = (µ− λ) I and so Rλ −Rµ = (µ− λ)RλRµ.
• This same equation can be found to hold for the integral expression, and so the result

follows by uniqueness of Laplace transforms.

• For a simpler proof in the case when A is bounded, we can use the fact that e−λtTt is a

continuous semigroup with in�nitesimal generator −R−1λ from which the result follows

by the Kolmogorov equations.
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The second technique that is used is called the Yosida semigroup, which acts as an approximation

to the semigroup, much like molli�ed functions do in PDEs. Observe that for any x ∈ R,

(λ− x)−1 = 1

λ

[
1 +

x

λ
+
x2

λ2
+ o

(
1

λ2

)]
, and so λ

(
λ

λ− x
− 1

)
= x+

x2

λ
+ o

(
1

λ

)
,

so by taking the limit of this object as λ → ∞, we get x back. Similarly, de�ning the Yosida

semigroup approximation to A by

Aλ = −λ (I − λRλ) ,

this can be easily found to induce a corresponding approximative semigroup. Indeed, Aλ → A

as λ→∞ uniformly.

Proof of Hille-Yosida Theorem:

• An in�nitesimal generator satis�es the conditions of Hille-Yosida-Phillips and Lumer-

Phillips from the formula for the resolvents.

• If A is an in�nitesimal generator for a C0-semigroup, then if f ∈ D (A) has x ∈ S such

that f+ ≤ f (x), then

Ttf (x) ≤ Ttf+ (x) ≤ ‖Ttf+‖∞ ≤ ‖f+‖∞ = f (x) ,

which immediately implies that Af (x) ≤ 0, thus, the conditions for Hille-Yosida-Ray

are satis�ed.

• Lumer-Phillips implies Hille-Yosida-Phillips: for contraction semigroups, since ‖Tt‖ ≤ 1

then ‖Rλ‖ ≤ λ−1. By repeated integration, we have that ‖Rnλ‖ ≤ λ−n.
• Hille-Yosida-Ray implies Lumer-Phillips: let f ∈ D (A) be arbitrary and x ∈ S satisfy

|f (x)| = ‖f‖. Let g (x) = f · signf (x) so that g+ ≤ g (x) and Ag (x) ≤ 0. Then for any

λ > 0,

‖(λ−A) f‖ ≥ λg (x)−Ag (x) ≥ λg (x) = λ ‖f‖ .

• To prove Hille-Yosida-Phillips:

� Let T λt = etAλ : from the series expansion of etAλ and the conditions, we can show

that ∥∥∥T λt ∥∥∥ ≤M · exp(tω · λ

λ− ω

)
,

and so for any ω∗ > ω, by taking λ su�ciently large,
∥∥T λt ∥∥ < Metω

∗
. Thus,∥∥T λt ∥∥ ≤Metω.

� There is for any x ∈ X,

T λt x− T
µ
t x =

∫ t

0

d

ds

[
Tµt−sT

λ
s x
]
ds =

∫ t

0
Tµt−sT

λ
s (Aλ −Aµ)xds,

and so we obtain the estimate∥∥∥T λt x− Tµt x∥∥∥ ≤M2tetω ‖Aλx−Aµx‖ .

� Since Aλx → Ax,
{
T λt
}
λ≥0 is Cauchy with a limit Tt. Since T

λ
t is a semigroup, Tt

is a semigroup and A is its in�nitesimal generator.

The last result to be presented is a remarkable general convergence theorem for semigroups.

While this is certainly useful in the numerical side of PDE theory (you know, the side of PDE
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theory that is actually valuable; trust Min, not me), it has even greater consequences in proba-

bility.

Consequence of Lax's Theorem. Suppose that Anx → Ax for all x ∈ X. Then for the

corresponding semigroups Tn,t and Tt, there is Tn,tx→ Ttx for all x ∈ X as n→∞ if and only

if the corresponding semigroups Tn,t are uniformly bounded.

As it turns out, the sequence of semigroups Tn,t must also be uniformly bounded whenever

An → A. This follows from two facts: the �rst is that the Yosida semigroup approximations

Aλn → Aλ strongly, that is,
∥∥Aλn −Aλ∥∥ → 0. The second, is that uniform convergence of An

implies uniform convergence of Tn,t through the following estimate:

Lemma. Let Tt and T
′
t be semigroups with corresponding generators A and A′. Assume A′ is

bounded. Then∥∥Ttx− T ′tx∥∥ ≤ ∫ t

0

∥∥T ′t−s∥∥∥∥(A−A′)Tsx∥∥ ds, x ∈ D (A) , t ≥ 0.

Proof. Observe that by the commutativity of A and Tt, there is

Ttx− T ′tx =

∫ t

0

d

ds

[
T ′t−sTsx

]
ds =

∫ t

0
T ′t−sTs

(
A−A′

)
xds

=

∫ t

0
T ′t−s

(
A−A′

)
Tsxds,

from which the result follows. �

Theorem (Trotter-Kurtz Theorem). For a sequence of semigroups {Tn,t}∞n=1 and semi-

group Tt with corresponding generators An and A, Tn,t → Tt uniformly for every t ≥ 0 if and

only if Anx→ Ax for every x ∈ X.

Applications. The above theorem is instrumental in proving the physical relevance of linear

ODEs and parabolic linear PDEs as it immediately implies convergence of Markov processes to

their corresponding deterministic limits. Consider this: the in�nitesimal generator of the scaled

random walk 1√
n
Xnt (where Xt is the random walk on Z) is given by

Anf (x) =
n

2

[
f

(
x+

1√
n

)
− 2f (x) + f

(
x− 1√

n

)]
→ 1

2
f ′′ (x) ,

which is the in�nitesimal generator for Brownian motion. Thus, the Trotter-Kurtz Theorem

implies that the distributions of the scaled random walk converge to those of Brownian motion.

Resources

• �Vector-Valued Laplace Transforms and Cauchy Problems� by Arendt et al.

• �Linear Operators, Part I General Theory� by Dunford & Schwarz

• �Fundamentals of Modern Probability� by Kallenberg

• �Functional Analysis� by Yosida

• �Chaos, Fractals, and Noise� by Lasota and Mackey


